Skip to main content
Log in

Enhancement of heart rate variability by cholinergic stimulation with pyridostigmine in healthy subjects

  • Research Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the effect of the oral administration of pyridostigmine bromide on indices of heart rate variability (HRV) in healthy young volunteers. Seventeen healthy participants (11 men, 6 women; aged 27±8 y) submitted to a randomized, crossover, double-blind protocol, in which they received 30 mg pyridostigmine bromide (PYR) or placebo orally at 8-hour intervals for 24 hours, on two separate days. Venous blood samples were collected 2 and 24 hours after the first dose for determination of serum cholinesterase activity. Holter tapes were recorded during the 24-hour period and analyzed using a semiautomatic technique to evaluate time- and frequency-domain indices of HRV and to build three-dimensional return maps for later quantification. Symptoms were mild and occurred similarly during administration of PYR and placebo (p=0.140). Serum cholinesterase activity was reduced by 15% at 2 hours (p=0.013) and by 14% at 24 hours (p=0.010) after the first dose of PYR, but not after administration of placebo. Pyridostigmine administration caused a significant increase in the mean 24-hour R-R interval (placebo: 814±20 msec; PYR: 844±18 msec; p=0.003) and in time-domain indices of HRV, such as the standard deviation of all R-R intervals (SDNN; placebo: 151±9 msec; PYR: 164 ±9 msec; p=0.017), and the percentage of pairs of adjacent R-R intervals differing by more than 50 msec (pNN50; placebo: 12.8±1.8%; PYR: 13.9±1.5%; p=0.029). Pyridostigmine had no significant effect on frequency-domain indices of HRV, but resulted in significant increase in P2, a parasympathetic index derived from the three-dimensional return map (placebo: 93±13 msec; PYR: 98±13 ms; p=0.029). In conclusion, low-dose pyridostigmine reduced mean heart rate and increased HRV during a 24-hour period in healthy young subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akselrod S, Gordon D, Ubel FA,et al. Power spectral analysis of heart rate fluctuation: a quantitative probe of beat to beat cardiovascular control.Science 1981; 213:220–223.

    CAS  PubMed  Google Scholar 

  2. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.Circulation 1996; 93:1043–1065.

    Google Scholar 

  3. Moraes RS, Ferlin EL, Polanczyk CA,et al. Three-dimensional return map: a new tool for quantification of heart rate variability.Auton Neurosc: Clinical Basic 2000; 83:90–99.

    CAS  Google Scholar 

  4. Kleiger RE, Miller JP, Bigger JTJ,et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction.Am J Cardiol 1987; 59:256–262.

    Article  CAS  PubMed  Google Scholar 

  5. Odemuyiwa O, Malik M, Farrel TG,et al. A comparison of the predictive characteristics of heart rate variability and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction.Am J Cardiol 1991; 64:434–439.

    Google Scholar 

  6. La Rovere MT, Bigger JT, Marco MI,et al. Baroreflex sensitivity and heart rate variability in prediction of total mortality after myocardial infarction.Lancet 1998; 351:478–484.

    Article  PubMed  Google Scholar 

  7. Nolan J, Batin PD, Andrews R,et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart).Circulation 1998; 98:1510–1516.

    CAS  PubMed  Google Scholar 

  8. Bonaduce D, Petretta M, Marciano F,et al. Independent and incremental prognostic value of heart rate variability in patients with chronic heart failure.Am Heart J 1999; 138:273–284.

    Article  CAS  PubMed  Google Scholar 

  9. Kent KM, Smith ER, Redwood DR,et al. Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation.Circulation 1973; 47:291–298.

    CAS  PubMed  Google Scholar 

  10. De Ferrari GM, Salvati P, Grossoni M,et al. Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacoline and oxotremorine in conscious dogs with a healed myocardial infarction.J Am Coll Cardiol 1993; 21:283–290.

    Google Scholar 

  11. Waxman MB, Wald RW. Termination of ventricular tachycardia by increase in cardiac vagal drive.Circulation 1977; 56:385–391.

    CAS  PubMed  Google Scholar 

  12. Brown JH, Taylor P. Muscarinic receptor agonists and antagonists. In:Goodman and Gilman's pharmacological basis of therapeutics. 9th. ed. Hardman JG, Limbird LE, eds. New York: McGraw-Hill; 1996. pp. 149–151.

    Google Scholar 

  13. Katona PG, Lipson D, Dauchot PJ. Opposing central and peripheral effects of atropine on parasympathetic cardiac control.Am J Physiol 1977; 232:H146-H151.

    CAS  PubMed  Google Scholar 

  14. Dibner-Dunlap ME, Eckberg DL, Magid NM,et al. The long-term increase of baseline and reflexly augmented levels of human vagal-cardiac nervous activity induced by scopolamine.Circulation 1985; 71:797–804.

    CAS  PubMed  Google Scholar 

  15. Casadei B, Pipilis A, Sessa F,et al. Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction.Circulation 1993; 88:353–357.

    CAS  PubMed  Google Scholar 

  16. De Ferrari GM, Mantica M, Vanoli E,et al. Scopolamine increases vagal tone and vagal reflexes in patients after myocardial infarction.J Am Coll Cardiol 1993; 22:1327–1334.

    PubMed  Google Scholar 

  17. Pedretti RF, Colombo E, Braga SS,et al. Influence of scopolamine on cardiac sympathovagal interaction after acute myocardial infarction.Am J Cardiol 1993; 72:384–392.

    Article  CAS  PubMed  Google Scholar 

  18. Vybiral T, Glaeser DH, Morris G,et al. Effects of low-dose transdermal scopolamine on heart rate variability in acute myocardial infarction.J Am Coll Cardiol 1993; 22:1320–1336.

    CAS  PubMed  Google Scholar 

  19. La Rovere MT, Mortara A, Pantaleo P,et al. Scopolamine improves autonomic balance in advanced congestive heart failure.Circulation 1994; 90:838–843.

    PubMed  Google Scholar 

  20. Hull Jr SH, Vanoli E, Adamsom PB,et al. Do increases in markers of vagal activity imply protection from sudden death? The case of scopolamine.Circulation 1995; 91:2516–2519.

    CAS  PubMed  Google Scholar 

  21. Taylor P. Anticholinesterase agents. In:Goodman and Gilman's pharmacological basis of therapeutics. 9th. ed. Hardman JG, Limbird LE, eds. New York: McGraw-Hill; 1996. pp. 161–176.

    Google Scholar 

  22. Stephenson LA, Kolka MA. Acetylcholinesterase inhibitor, pyridostigmine bromide, reduces skin blood flow in humans.Am J Physiol 1990; 258 (Regulatory Integrative Comp Physiol 27):R951–R957.

    Google Scholar 

  23. Izraeli S, Alcalay M, Benjamini Y,et al. Modulation of the dose-dependent effects of atropine by low-dose pyridostigmine: quantification by spectral analysis of heart rate fluctuations in healthy human beings.Pharmacol Biochem Behav 1991; 39:613–617.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts DE, Sawka MN, Young AJ,et al. Pyridostigmine bromide does not alter thermoregulation during exercise in cold air.Can J Physiol Pharmacol. 1994; 72:788–793.

    CAS  PubMed  Google Scholar 

  25. Magnotti RA Jr, Eberly JP, Quarm DE,et al. Measurement of acetylcholinesterase in erythrocytes in the field.Clin Chem 1987; 33:1731–1735.

    CAS  PubMed  Google Scholar 

  26. Polanczyk CA, Rohde LEP, Moraes RS,et al. Sympathetic representation in time and frequency domain indices of heart rate variability.Eur J Appl Physiol 1998; 79:69–73.

    Article  CAS  Google Scholar 

  27. Rohde LEP, Polanczyck CA, Moraes RS,et al. Effect of partial arrhythmia suppression with amiodarone on heart rate variability of patients with congestive heart failure.Am Heart J 1998; 136:31–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro ALP, Moraes RS, Ribeiro JP,et al. Parasympathetic dysautonomia precedes left ventricular systolic dysfunction in Chagas' disease.Am Heart J 2001; 141:260–265.

    Article  CAS  PubMed  Google Scholar 

  29. Dyer AR, Persky V, Stamler J,et al. Heart rate is a prognostic factor for coronary heart disease and mortality: finding in three Chicago epidemiologic studies.Am J Epidemiol 1980; 112:736–749.

    CAS  PubMed  Google Scholar 

  30. Hjalmarson A, Gilpin EA, Kjekshus J,et al. Influence of heart rate on mortality after acute myocardial infarction.Am J Cardiol 1990; 65:547–553.

    Article  CAS  PubMed  Google Scholar 

  31. Thaulow E, Erikssen JE. How important is heart rate?J Hypertension 1991; 9(suppl):S27-S30.

    CAS  Google Scholar 

  32. Serra SM, Vivacqua SHR, Bastos BG,et al. Exercise stress testing in healthy subjects during cholinergic stimulation after a single dose of pyridostigmine. Arq Bras Cardiol 2001; 76:279–84.

    Article  CAS  PubMed  Google Scholar 

  33. Nóbrega ACL, Carvalho ACG, Santos KB,et al. Cholinergic stimulation with pyridostigmine blunts the cardiac responses to mental stress.Clin Auton Res 1999; 9:1–6.

    Article  Google Scholar 

  34. Hedman A, Hartikainen J, Hakumäki M. Physiological background underlying short-term heart rate variability.Ann Noninvasive Electrocardiol 1998; 3:267–280.

    Google Scholar 

  35. Malik M, Camm AJ. Components of heart rate variability—what they really mean and what we really measure.Am J Cardiol 1993; 72:821–822.

    Article  CAS  PubMed  Google Scholar 

  36. Corr PB, Gillis RA. Autonomic neural influences on the dysrhythmias resulting from myocardial infarction.Circ Res 1978; 43:1–9.

    CAS  PubMed  Google Scholar 

  37. De Silva RA, Verrier RL, Lown BL. The effects of psychological stress and vagal stimulation with morphine on vulnerability to ventricular fibrillation (VF) in the concious dog.Am Heart J 1978; 95:197–203.

    Google Scholar 

  38. Vanoli E, De Ferrari GM, Stramba-Badiale M,et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction.Circ Res 1991; 68:1471–1481.

    CAS  PubMed  Google Scholar 

  39. Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden death. Experimental basis and clinical observations for post-myocardial infarction risk stratification.Circulation 1992; 85(suppl I):177–199.

    Google Scholar 

  40. Meesman M, Karagueuzian HS, Ino T,et al. The role of enhanced vagal activity on ischemic ventricular tachycardia: pharmacologic basis of inefficiency.Am Heart J 1991; 121:1703–1713.

    Google Scholar 

  41. Mitrani RD, Kloosterman EM, Huikuri H,et al. Muscarinic receptor stimulation with edrophonium hydrochloride does not elevate ventricular fibrillation threshold in humans.J Cardiovasc Electrophysiol 1999; 10:809–816.

    CAS  PubMed  Google Scholar 

  42. Posel D, Noakes T, Kantor P,et al. Exercise training after experimental myocardial infarction increased the ventricular fibrillation threshold before and after the onset of reinfarction in the isolated rat heart.Circulation 1989; 80:138–145.

    CAS  PubMed  Google Scholar 

  43. Hull SS Jr, Vanoli E, Adamson PB,et al. Exercise training confers anticipatory protection from sudden death during acute myocardial ischemia.Circulation 1994; 89:548–552.

    PubMed  Google Scholar 

  44. La Rovere MT, Mortara A, Sandrome G,et al. Autonomic nervous system adaptation to short-term exercise training.Chest 1992; 101(suppl):S299-S303.

    Google Scholar 

  45. Coats AJS, Adamopoulos S, Radaelli A,et al. Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation and autonomic function.Circulation 1992; 85:2119–2131

    CAS  PubMed  Google Scholar 

  46. Oldridge NB, Guyatt GH, Fischer ME,et al. Cardiac rehabilitation after myocardial infarction: combined experience of randomized clinical trials.JAMA 1988; 260:945–950.

    Article  CAS  PubMed  Google Scholar 

  47. Belardinelli R, Georgiou D, Cianci G,et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome.Circulation 1999; 99:1173–82.

    CAS  PubMed  Google Scholar 

  48. Sneddon JF, Bashir Y, Ward DE. Vagal stimulation after myocardial infarction: accentuating the positive.J Am Coll Cardiol 1993; 22:1335–1337.

    CAS  PubMed  Google Scholar 

  49. Halliwill JR, Billman GE, Eckberg DL. Effect of a “vagomimetic” atropine dose on canine cardiac vagal tone and susceptibility to sudden cardiac death.Clin Auton Res 1998; 8:155–164.

    Article  CAS  PubMed  Google Scholar 

  50. Wellstein A, Pitschner HF. Complex dose-response curve of atropine in man explained by different functions of M1 and M2-cholinoceptors.Naunyn Schmiedebergs Arch Pharmacol 1988; 338:19–27.

    Article  CAS  PubMed  Google Scholar 

  51. Backman SB, Bachoo M, Polosa C. Mechanism of the bradycardia produced in the cat by the anticholinesterase neostigmine.J Pharmacol Exp Ther 1993; 265:194–200.

    CAS  PubMed  Google Scholar 

  52. Stein RD, Backman SB, Collier B,et al. Bradycardia produced by pyridostigmine and physostigmine.Can J Anaesth 1997; 44: 1286–1292.

    CAS  PubMed  Google Scholar 

  53. Nóbrega ACL, Carvalho ACG, Bastos BG. Resting and reflex heart rate responses during cholinergic stimulation with pyridostigmine in humans.Brazilian J Med Biol Res 1996; 29:1461–1465.

    Google Scholar 

  54. Pontes PV, Bastos BG, Romeo Filho RJ,et al. Cholinergic stimulation with pyridostigmine: hemodynamic and echocardiographic analysis in healthy subjects.Arq Bras Cardiol 1999; 72:297–306.

    Article  PubMed  Google Scholar 

  55. Castro RR, Serra SM, Nóbrega AC. Reduction of QTc interval dispersion: potential mechanism of cardiac protection of pyridostigmine bromide.Arq Bras Cardiol 2000; 75:205–213.

    Article  CAS  PubMed  Google Scholar 

  56. Grabe-Guimaräes A, Alves LM, Tibiriça E,et al. Pyridostigmine blunts the increases in myocardial oxygen demand elicited by the stimulation of the central nervous system in anesthetized rats.Clin Auton Res 1999; 9:83–89.

    PubMed  Google Scholar 

  57. Aquilonius SM, Eckernas AS, Hartvig P,et al. Pharmacokinetics and oral bioavailability of pyridostigmine in man.Eur J Clin Pharmacol 1980; 18:423–428.

    Article  CAS  PubMed  Google Scholar 

  58. Pyridostigmine kinetics in healthy subjects and patients with myasthenia gravis.Clin Pharmacol Ther 1985; 37:495–501.

  59. Nóbrega ACL, Castro RRT. Parasympathetic dysfunction as a risk factor in myocardial infarction: What is the treatment?Am Heart J 2000; 140:e23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Claudio L. Nóbrega M.D., Sc.D..

Additional information

Supported by the following Brazilian agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasilia, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brasilia, and Programa de Incentivo de Núcleos de Excelência (PRONEX), Brasilia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nóbrega, A.C.L., dos Reis, A.F., Moraes, R.S. et al. Enhancement of heart rate variability by cholinergic stimulation with pyridostigmine in healthy subjects. Clinical Autonomic Research 11, 11–17 (2001). https://doi.org/10.1007/BF02317797

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02317797

Key words

Navigation