Meccanica

, Volume 9, Issue 3, pp 157–161 | Cite as

Thermodynamic restrictions on thermoelectric, thermomagnetic and galvanomagnetic coefficients

  • Rinaldo Borghesani
  • Angelo Morro
Article

Summary

All the consequences of the Clausius-Duhem nequality on thermoelectric, thermomagnetic and galvanomagnetic ffects are examined within the framework of a fourth-order heory developed in a previous paper. Besides the classical results, ome new conditions are derived and discussed.

Keywords

Mechanical Engineer Civil Engineer Classical Result Thermodynamic Restriction Galvanomagnetic Coefficient 

Ommario

Gli autori esaminano tutte le conseguenze della isuguaglianza di Clausius-Dubem sugli effetti termoelettrici, rmomagnetici e galvanomagnetici nell'ambito di una teoria al narto ordine sviluppata in un lavoro precedente. Si ritrovano i isultati classici e, nel contempo, vengono dedotte e discusse talune hove condizioni.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. D. Landau andE. M. Lifshitz,Electrodynamics of continuous media, Pergamon Press, 1960.Google Scholar
  2. [2]
    S. R. De Groot andP. Mazur,Non-equilibrium thermodynamics, North-Holland, 1962.Google Scholar
  3. [3]
    B. Spain,Analytical conics, Pergamon Press, 1967.Google Scholar
  4. [4]
    A. C. Pipkin andR. S. Rivlin,Galvanomagnetic and thermomagnetic effects in isotropic materials, J. Math. Phys., no. 1, pp. 542–546, 1960.MathSciNetGoogle Scholar
  5. [5]
    B. D. Coleman andE. H. Dill,Thermodynamic restrictions on the constitutive equations of electromagnetic theory, Z. angew. Math. Phys., no. 22, pp. 691–702, 1971.Google Scholar
  6. [6]
    B. D. Coleman andE. H. Dill,On the thermodynamics of electromagnetic fields in materials with memory, Arch. Rational Mech. Anal., no. 41, pp. 132–162, 1971.CrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Borghesani andA. Morro,Thermodynamics and isotropy in thermal and electric conduction, Meccanica (Journal of AI-META), vol. 9, no. 2, (1974).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Rinaldo Borghesani
    • 1
  • Angelo Morro
    • 1
  1. 1.Istituto Matematico dell'UniversitàGenova(Italy)

Personalised recommendations