Skip to main content
Log in

Temperature and strain measurement by combining ILFE and bragg grating optical fiber sensors

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

This paper presents two optical fiber sensor configurations that are capable of simultaneously measuring temperature and strain. These sensor configurations use serial and parallel combinations of in-line fiber etalon (ILFE) and in-fiber Bragg grating sensors, along with wavelength division multiplexing concepts. The results obtained while simultaneously varying the temperature over 130°C and strain field over 1500 με showed favorable agreement with thermistors and resistance strain gages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meltz, G., Dunphy, J., Glenn, W., Farina, J., andLeonberger, F., “Fiber Optic Temperature and Strain Sensors,” SPIE198,104 (1987).

    Google Scholar 

  2. Farahi, F., Webb, D., Jones, J., andJackson, D., “Simultaneous Measurement of Temperature and Strain: Cross-sensitivity Considerations,”J. Lightwave Tech.,8(2),138–142 (1990).

    Article  Google Scholar 

  3. Vengsarkar, A., Michie, W., Jankovic, L., Culshaw, B., andClaus, R., “Fiber Optic Sensor for Simultaneous Measurement of Temperature and Strain,” SPIE1367,249–260 (1990).

    Google Scholar 

  4. Vengsarkar, A., Michie, W., Jankovic, L., Culshaw, B., andClaus, R., “Fiber Optic Dual-technique Sensor for Simultaneous Measurement of Temperature and Strain,”J. Lightwave Tech.,12,170–177 (1994).

    Article  Google Scholar 

  5. Michie, W., Culshaw, B., Roberts, R., andDavidson, R., “Fiber Optic Technique for Simultaneous Measurement of Strain and Temperature Variations in Composite Materials,” SPIE1588,342–355 (1991).

    Google Scholar 

  6. Wang, G., Wang, A., Murphy, K., andVengsarkar, A., “Two-mode Fabry Perot Optical Fiber Sensors for Strain and Temperature Measurements,”Elect. Lett.,27(20),1843–1845 (1991).

    Google Scholar 

  7. O'Keefe, C.V., Djordjevic, B.B., and Ranganathan, B.N., “In-situ Acoustical and Optical Waveguide Sensors,” SPIE, Proc. First European Conf. Smart Struct. Mater., B. Culshaw, P.T. Gardiner and A. McDonach, eds., Glasgow, 391–394 (1992).

  8. Xu, M.G., Archanbault, J., Reekie, L., andDankin, J.P., “Discrimination Between Strain and Temperature Effects Using Dual-wavelength Fibre Grating Sensors,”Elect. Lett.,30(13),1085–1087 (1994).

    Article  Google Scholar 

  9. Flavin, D., McBride, R., andJones, J., “Interferometric Fiber-optic Sensing Based on Modulation of Group Delay and First Order Dispersion: Application to Strain-temperature Measurand,”J. Lightwave Tech.,13(7),1314–1323 (1995).

    Article  Google Scholar 

  10. Singh, H. andSirkis, J.S., “Simultaneously Measuring Temperature and Strain Using Optical Fiber Microcavities,”J. Lightwave Tech.,15(4),647–653 (1997).

    Article  Google Scholar 

  11. Sirkis, J.S., Berkoff, T.A., Jones, R., Singh, H., Kersey, A.D., Friebele, E.J., andPutnam, M.A., “In-line Fiber Etalon (ILFE) Fiber Optic Strain Sensor,”J. Lightwave Tech.,12(12),2153–2161 (1995).

    Google Scholar 

  12. Sirkis, J., “A Unified Approach to Phase-strain-temperature Models for Smart Structure Interferometric Optical Fiber Sensors: Part 2. Applications,”Appl. Opt.,32(4),762–773 (1993).

    Google Scholar 

  13. Singh, H. andSirkis, J., “Cross-talk and Noise Issues in Coherence Multiplexed In-line Fabry Perot Etalon (ILFE) Strain Sensor,”SPIE Proc. Smart Struct.,2444,276–287 (1995).

    Google Scholar 

  14. Born, M. andWolf, E., Principles of Optics, 6th ed., Pergamon, New York (1980).

    Google Scholar 

  15. Hill, K., Fujii, Y., Johnson, D., andKawasaki, B., “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication,”Appl. Phys. Lett.,32,647–649 (1978).

    Article  Google Scholar 

  16. Hill, K., “Bragg-gratings Fabricated in Monomode Photosensitive Optical Fiber by UV Exposure Through a Phase-mask,”Appl. Phys. Lett.,62,1035–1037 (1993).

    Article  Google Scholar 

  17. Morey, W., Ball, G., and Meltz, G., “Photoinduced Bragg Gratings in Optical Fiber,” (February 1994).

  18. Sirkis, J.S. andHaslach, H.W., “Interferometric Strain Measurement by Arbitrarily Configured, Surface-mounted, Optical Fibers,”J. Lightwave Tech.,8,1497–1503 (1990).

    Article  Google Scholar 

  19. Singh, H., “Strain and Temperature Sensing Using Optical Fiber Sensors, Ph.D. thesis, University of Maryland (1995).

  20. Farahi, F., Newton, T., Jones, J., andJackson, D., “Coherence Multiplexing of Remote Fibre Optic Fabry-Perot Sensing System,”Opt. Comm.,65(5),319–321 (1988).

    Google Scholar 

  21. Al-Chalabi, S., Culshaw, B., Davies, D., Giles, I., andUttamchandani, D., “Multiplexed Optical Fibre Interferometers: An Analysis Based on Radar Systems,”IEEE Proc. J.,132,150–156 (1985).

    Google Scholar 

  22. Jackson, D., Kersey, A., Corke, M., andJones, J., “Pseudoheterodyne Detection Scheme for Optical Interferometers,”Elect. Lett.,18,1081–1083 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Sirkis, J.S. Temperature and strain measurement by combining ILFE and bragg grating optical fiber sensors. Experimental Mechanics 37, 414–419 (1997). https://doi.org/10.1007/BF02317307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02317307

Keywords

Navigation