Skip to main content
Log in

Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider as in Part I a family of linearly elastic shells of thickness 2ɛ, all having the same middle surfaceS=ϕ(ϖ)⊂R 3, whereωR 2 is a bounded and connected open set with a Lipschitz-continuous boundary, andϕl 3 (ϖ;R 3). The shells are clamped on a portion of their lateral face, whose middle line isϕ(γ 0), whereγ 0 is any portion of∂ω withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements

$$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$

where\(\gamma _{\alpha \beta }\)(η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder andϕ(γ 0) is contained in a generatrix ofS.

We show that, if the applied body force density isO(ɛ 2) with respect toɛ, the fieldu(ɛ)=(u i (ɛ)), whereu i (ɛ) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]−1, 1[, converges asɛ→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts 1−1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz.,

$$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$

for allη=(η i ) ∈V F (ω), where\(a^{\alpha \beta \sigma \tau }\) are the components of the two-dimensional elasticity tensor of the surfaceS,

$$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$

are the components of the linearized change of curvature tensor ofS,\(\Gamma _{\alpha \beta }^\sigma\) are the Christoffel symbols ofS,\(b_\alpha ^\beta\) are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acerbi, E., Buttazzo, G. &Percivale, D. [1988]: Thin inclusions in linear elasticity: a variational approach,J. reine angew. Math. 386, 99–115.

    MathSciNet  Google Scholar 

  • Amrouche, C. &Girault, V. [1994]: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,Czech. Math J. 44, 109–140

    MathSciNet  Google Scholar 

  • Bernadou, M. &Ciarlet, P. G. [1976]: Sur l'ellipticité du modèle linéaire de coques de W.T. Koiter, inComputing Methods in Applied Sciences and Engineering (R. Glowinski &J. L. Lions, Editors), pp. 89–136, Lecture Notes in Economics and Mathematical Systems,134, Springer-Verlag.

  • Bernadou, M., Ciarlet, P. G. &Miara, B. [1994]: Existence theorems for two-dimensional linear shell theories,J. Elasticity 34, 111–138.

    MathSciNet  Google Scholar 

  • Blouza, A. &Le Dret, H. [1994a]: Sur le lemme du mouvement rigide,C.R. Acad. Sci. Paris, Sér. I,319, 1015–1020.

    Google Scholar 

  • Blouza, A. &Le Dret, H. [1994b]: Existence et unicité pour le modèle de Koiter pour une coque peu régulière,C.R. Acad. Sci. Paris, Sér. I,319, 1127–1132.

    Google Scholar 

  • Borchers, W. &Sohr, H. [1990]: On the equations rotv=g and divu=f with zero boundary conditions,Hokkaido Math. J. 19, 67–87.

    MathSciNet  Google Scholar 

  • Brezis, H. [1983]:Analyse Fonctionnelle, Théorie et Applications, Masson.

  • Caillerie, D. &Sanchez-Palencia, E. [1995]: Elastic thin shells: asymptotic theory in the anisotropic and heterogenous cases,Math. Models Methods Appl. Sci. 5, 473–496.

    MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1990]:Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis, Masson, Paris.

    Google Scholar 

  • Ciarlet, P. G. [1992a]: Echanges de limites en théorie asymptotique de coques. I. En premier lieu, “la coque devient une plaque”,C. R. Acad. Sci. Paris, Sér. I,315, 107–111.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. [1992b]: Echanges de limites en théorie asymptotique de coques. II. En premier lieu, “l'épasisseur tend vers zéro”,C. R. Acad. Sci. Paris, Sér. I,315, 227–233.

    MATH  MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996a]: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations,Arch. Rational Mech. Anal. 136, 119–161.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996b]: Asymptotic analysis of linearly elastic shells. III. Justification of Koiter's shell equations,Arch. Rational Mech. Anal. 136, 191–200.

    MathSciNet  ADS  Google Scholar 

  • Ciarlet, P. G. &Lods, V. [1996c]: Asymptotic analysis of linearly elastic shells: “Generalized membrane shells”,J. Elasticity 43, 147–188.

    Article  MathSciNet  Google Scholar 

  • Ciarlet, P. G. &Sanchez-Palencia, E. [1995]: Ellipticity of bending and membrane shell equations, inAsymptotic Methods for Elastic Structures (P. G. Ciarlet, L. Trabucho &J. M. Viaño, editors), pp. 31–39, de Gruyter.

  • Duvaut, G. &Lions, J. L. [1972]:Les Inéquations en Mécanique et en Physique, Dunod.

  • Kohn, R. V. &Vogelius, M. [1985]: A new model for thin plates with rapidly varying thickness, II. A convergence proof,Quart. Appl. Math. 43, 1–21.

    MathSciNet  Google Scholar 

  • Lods, V. [1996]: Limit behavior of a shell, when first the thickness approaches zero and then the shell becomes a plate,Asymptotic Anal. 12, 187–211.

    MATH  MathSciNet  Google Scholar 

  • Magenes, E. &Stampacchia, G. [1958]: I problemi al contorno per le equazioni differenziali di tipo ellitico,Ann. Scuola Norm. Sup. Pisa 12, 247–358.

    MathSciNet  Google Scholar 

  • Miara, B. &Sanchez-Palencia, E. [1996[: Asymptotic analysis of linearly elastic shells,Asymptotic Anal. 12, 41–54.

    MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1989a]: Statique et dynamique des coques minces. I. Cas de flexion pure non inhibée,C. R. Acad. Sci. Paris, Sér. I,309, 411–417.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1989b]: Statique et dynamique des coques minces. II. Cas de flexion pure inhibée,C. R. Acad. Sci. Paris Sér. I,309, 531–537.

    MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia, E. [1990]: Passages à la limite de l'élasticité tri-dimensionnelle à la théorie asymptotique des coques minces,C. R. Acad. Sci. Paris, Sér. II,311, 909–916.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by the Editor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciarlet, P.G., Lods, V. & Miara, B. Asymptotic analysis of linearly elastic shells. II. Justification of flexural shell equations. Arch. Rational Mech. Anal. 136, 163–190 (1996). https://doi.org/10.1007/BF02316976

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316976

Keywords

Navigation