Skip to main content
Log in

Solution of linear equations in remote sensing and picture reconstruction

Lösung linearer Gleichungen in der Ferndeutung und Bilder-Rekonstruktion

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The Moore-Penrose generalized inverse is utilized to obtain two general optimal solutions of a given system of linear equations. These solutions involve two matricesW andV. It is shown that available information regarding the desired solution and/or residual vector can be incorporated inW andV. Several of the known results in published literature are shown to be special cases of the optimal solutions given here.

Zusammenfassung

Es wird die Moore-Penrose generalisierte Inverse angewendet, um zwei allgemeine optimale Lösungen eines gegebenen Systems von linearen Gleichungen zu erhalten. Die Lösungen enthalten zwei MatrizenW undV. Es wird gezeigt, daß die vorhandene Auskunft in Bezug auf die gewünschte Lösung und/oder den verbleibenden Vektor inW undV einverleibt werden kann. Verschiedene Resultate in der Literatur sind somit Spezialfälle der hier gegebenen optimalen Lösungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleming, H. E., andW. L. Smith: Inversion techniques for remote sensing of atmospheric temperature profiles. Proceedings of the fifth symposium on temperature, its measurement and control in science and industry. Washington, D. C.: 1972.

  2. Smith, W. L., H. M. Woolf, andW. J. Jacob: A regression method for obtaining real-time temperature and geopotential height profiles from satellite spectrometer measurements and its application to Nimbus 3 “SIRS” Observations. Mo. Weather Rev.98, 582–603 (1970).

    Google Scholar 

  3. Strand, O. N., andE. R. Westwater: The statistical estimation of the numerical solution of Fredholm integral equation of the first kind. J. ACM15, 100–114 (1968).

    Article  MathSciNet  Google Scholar 

  4. Twomey, S.: Indirect measurement of atmospheric temperature profiles from satellites: II. Mathematical aspects of the inversion problems. Monthly Weather Rev.94, 363–366 (1966).

    Google Scholar 

  5. Frieder, G., andG. T. Herman: Resolution in reconstructing objects from electron micrographs. J. Theor. Bio.33, 189–211 (1971).

    Google Scholar 

  6. Gaarder, N. T., andG. T. Herman: Algorithms for reproducing objects from their x-rays. Conf. Internacional IEEE, Oaxtepec, Mexico, 1971.

  7. Gordon, R., R. Bender, andG. T. Herman: Algebraic reconstruction techniques (ART) for three dimensional electron microscopy and x-ray photography. J. Theor. Bio.29, 471–481 (1970).

    Google Scholar 

  8. Herman, G. T.: Two direct methods for reconstructing pictures from their projections; a comparative study. (Submitted for publication, 1971.)

  9. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc.51, 405–413 (1955).

    Google Scholar 

  10. Penrose, R.: On best approximate solutions of linear matrix equations. Proc. Camb. Philos. Soc.52, 17–19 (1956).

    MATH  MathSciNet  Google Scholar 

  11. Tewarson, R. P.: A direct method for generalized matrix inversion. SIAM J. on Num. Anal.4, 499–507 (1967).

    MATH  MathSciNet  Google Scholar 

  12. Tewarson, R. P.: On computing generalized inverses. Computing4, 139–152 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  13. Strand, O. N., andE. R. Westwater: Minimum-rms estimation of the numerical solution of a Fredholm integral equation of first kind. SIAM J. on Num. Anal.5, 287–295 (1968).

    MathSciNet  Google Scholar 

  14. Chipman, J. S.: On least squares with insufficient observations. J. Amer. Stat. Assoc.59, 1078 to 1111 (1964).

    MATH  MathSciNet  Google Scholar 

  15. Foster, M.: An application of the Wiener-Kolmogorov smoothing theory matrix inversion. J. SIAM9, 387–392 (1961).

    MATH  MathSciNet  Google Scholar 

  16. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math.5, 164–168 (1944).

    MathSciNet  Google Scholar 

  17. Twomey, S.: On the numerical solution of Fredholm integral equations of the first kind by the inversion of linear systems produced by quadrature. J. ACM10, 79–101 (1963).

    Article  Google Scholar 

  18. Twomey, S.: The application of numerical filtering to the solution of integral equations encountered in direct sensing measurements. J. Franklin Inst.279, 95–109 (1965).

    MathSciNet  Google Scholar 

  19. Tikhonov, A. N.: The stability of algorithms for the solution of degenerate systems of linear algebraic equations USSR Computational Math. and Math. Physics5, 181–188 (1965).

    MATH  Google Scholar 

  20. Smith, W. L., H. M. Woolf, andH. E. Fleming: Retrival of atmospheric temperature profiles from satellite measurements for dynamical forecasting. J. Appl. Meteorology11, 113–122 (1971).

    Google Scholar 

  21. Tikhonov, A. N.: Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl.4, 1035–1038 (1963).

    Google Scholar 

  22. Tikhonov, A. N.: Regularization of incorrectly posed problems. Soviet Math. Dokl.4, 1624 to 1627 (1963).

    MATH  Google Scholar 

  23. Tikhonov, A. N., andV. B. Glasko: The approximate solution of Fredholm integral equations of the first kind. USSR Comput. Math. and Math. Phys.4, 236–247 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewarson, R.P. Solution of linear equations in remote sensing and picture reconstruction. Computing 10, 221–230 (1972). https://doi.org/10.1007/BF02316909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316909

Keywords

Navigation