, Volume 105, Issue 1, pp 77–83 | Cite as

Dose-dependent effects of intravenous lorazepam on cardiovascular activity, plasma catecholamines and psychological function during rest and mental stress

  • Johanna H. M. Tulen
  • Peter Moleman
  • Frans Boomsma
  • Huibert G. van Steenis
  • Venantius J. H. M. van den Heuij
Original Investigations


Dose-dependent effects of intravenously administered lorazepam on psychophysiological activity during rest and mental stress were studied in order to examine differential responses to doses which may induce anxiolysis or sedation. In a double-blind randomized cross-over study, nine male volunteers participated in a placebo and a lorazepam session, during which the subjects repeatedly performed a 10-min version of the Stroop Color Word Test (CWT), with 10 min of rest between the CWTs. Lorazepam was administered before each rest period in increasing doses of 0.0, 0.06, 0.13, 0.25 and 0.5 mg (total cumulative dose: 0.94 mg). Heart rate showed a dose-dependent decrease during rest with an ED50 of 0.13 mg lorazepam, while lorazepam had no effect on the cardiovascular and plasma catecholamine response magnitudes to the CWT. Subjective fatigue and reaction time increased significantly after 0.94 mg lorazepam, while at the same dose vigor decreased; state anxiety after the CWT was not influenced by lorazepam. These data show differential effects of lorazepam on cardiovascular, biochemical and psychological function. While heart rate was suppressed at low doses during rest and reaction time and subjective fatigue increased at doses which induced sedation, state anxiety and physiological response patterns to the CWT were not influenced by lorazepam.

Key words

Lorazepam IV Catecholamines Blood pressure Heart rate Performance tasks Subjective mood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulenger J-P, Smokcum R, Lader M (1984) Rate of increase of plasma lorazepam concentrations: absence of influence upon subjective and objective effects. J Clin Psychopharmacol 4[1]:25–31PubMedGoogle Scholar
  2. Cohn J, Wilcox CS (1986) Low-sedation potential of buspirone compared with alprazolam and lorazepam in the treatment of anxious patients: a double-blind study. J Clin Psychiatry 47:409–412PubMedGoogle Scholar
  3. Duka T, Ackenheil M, Noderer J, Doenicke A, Dorow R (1986) Changes in noradrenaline plasma levels and behavioural responses induced by benzodiazepine agonists with the benzodiazepine antagonist Ro 15-1788. Psychopharmacology 90:351–357CrossRefPubMedGoogle Scholar
  4. Elliott HW, Nomof N, Navarro G, Ruelius HW, Knowles JA, Comer WH (1970) Central nervous system and cardiovascular effects of lorazepam in man. Clin Pharmacol Ther 12:468–481Google Scholar
  5. File SE, Lister RG (1982) Do lorazepam-induced deficits in learning result from impaired rehearsal, reduced motivation or increased sedation? Br J Clin Pharmacol 14:545–550PubMedGoogle Scholar
  6. File SE, Lister RG (1985) A comparison of the effects of lorazepam with those of propranolol on experimentally-induced anxiety and performance. Br J Clin Pharmacol 19:445–451PubMedGoogle Scholar
  7. Frankenhaeuser M, Johansson G (1976) Task demand as reflected in catecholamine excretion and heart rate. J Hum Stress 2:15–23Google Scholar
  8. Geller I, Seifter J (1960) The effects of meprobamate, barbiturates,d-amphetamine and promazine on experimentally induced conflict in the rat. Psychopharmacologica 1:482–492Google Scholar
  9. Grant SJ, Mayor R, Redmond DE (1984) Effects of alprazolam, a novel triazolobenzodiazepine, on locus coeruleus unit activity. Neurosci Abstr 10:952Google Scholar
  10. Greenblatt DJ, Comer WH, Elliott HW, Shader RI, Knowles JA, Ruelius HW (1977) Clinical pharmacokinetics of lorazepam. III. Intravenous injection. J Clin Pharmacol 17:490–494PubMedGoogle Scholar
  11. Hjemdahl P, Freyschuss U, Juhlin-Dannfelt A, Linde B (1984) Differentiated sympathetic activation during mental stress evoked by the Stroop test. Acta Physiol Scand (Suppl) 527:25–29Google Scholar
  12. Knippenberg FEC van, Duivenvoorden HJ, Bonke B, Passchier J (1990) Shortening the State-Trait Anxiety Inventory. J Clin Epidemiol 43[9]:995–1000PubMedGoogle Scholar
  13. Kyriakopoulos AA, Greenblatt DJ, Shader RJ (1978) Clinical pharmacokinetics of lorazepam: a review. J Clin Psychiatry 39[10-2]:16–23PubMedGoogle Scholar
  14. Lader M, Bruce M (1986) States of anxiety and their induction by drugs. Br J Clin Pharmacol 22:251–261PubMedGoogle Scholar
  15. McNair DM, Lorr M, Droppelman LF (1971) Manual for the profile of mood states. Educational and Industrial Testing Service, San DiegoGoogle Scholar
  16. Patat A, Klein MJ, Hucher M (1987) Effects of single oral doses of clobazam, diazepam and lorazepam on performance tasks and memory. Eur J Clin Pharmacol 32:461–466CrossRefPubMedGoogle Scholar
  17. Peňáz J, Voigt A, Teichmann W (1976) Beitrag zur fortlaufenden indirekten Blutdruckmessung. Z Inn Med 31:1030–1033Google Scholar
  18. Ploeg HM van der, Defares PB, Spielberger CD (1980) ZBV. Handleiding bij de Zelf-Beoordelings Vragenlijst. Swets & Zeitlinger, LisseGoogle Scholar
  19. Preston GC, Ward CE, Broks P, Traub M, Stahl SM (1989) Effects of lorazepam on memory, attention and sedation in man: antagonism by Ro 15-1788. Psychopharmacology 97:222–227CrossRefPubMedGoogle Scholar
  20. Roy-Byrne PP, Lewis N, Villacres C, Greenblatt DJ, Shader RI, Veith RC (1988) Suppression of norepinephrine appearance rate in plasma by diazepam in humans. Life Sci 43:1615–1623CrossRefPubMedGoogle Scholar
  21. Roy-Byrne PP, Lewis N, Villacres E, Diem H, Greenblatt DJ, Shader RI, Veith R (1989) Preliminary evidence of benzodiazepine subsensitivity in panic disorder. Biol Psychiatry 26:744–748CrossRefPubMedGoogle Scholar
  22. Sanders AF (1983) Towards a model of stress and human performance. Acta Psychol 53:61–97Google Scholar
  23. Settels JJ, Wesseling KH (1985) Fin. A. Pres: Non-invasive finger arterial pressure waveform registration. In: Orlebeke JR, Mulder G, van Doornen LJP (eds) Psychophysiology of cardiovascular control. Plenum Press, New York, pp 267–283Google Scholar
  24. Siegel S (1956) Nonparametric statistics for the behavioral sciences. McGraw-Hill, Kogakusha TokyoGoogle Scholar
  25. Stroop JR (1935) Interference in serial verbal reactions. J Exp Psychol 18:643–661Google Scholar
  26. Tulen JHM, Moleman P, Steenis HG van, Boomsma F (1989) Characterization of stress reactions to the Stroop Color Word Test. Pharmacol Biochem Behav 32[1]:9–15CrossRefPubMedGoogle Scholar
  27. Van der Hoorn FAJ, Boomsma F, Man in 't Veld AJ, Schalekamp MADH (1989) Determination of catecholamines in human plasma by high-performance liquid chromatography: comparison between a new method with fluorescence detection and an established method with electrochemical detection. J Chromatogr 487:17–28PubMedGoogle Scholar
  28. Wald FDM, Mellenbergh GJ (1990) De verkorte versie van de nederlandse vertaling van de Profile Of Mood States (POMS). Ned T Psychol 45:86–90Google Scholar
  29. Wesseling KH, De Wit B, Settels JJ, Klauwer WH, Arntzenius AC (1982) On the indirect registration of finger blood pressure after Peňáz. Funkt Biol Med 1:245–250Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Johanna H. M. Tulen
    • 1
    • 2
  • Peter Moleman
    • 1
  • Frans Boomsma
    • 3
  • Huibert G. van Steenis
    • 2
    • 4
  • Venantius J. H. M. van den Heuij
    • 1
  1. 1.Department of PsychiatryUniversity Hospital Dijkzigt and Erasmus University RotterdamRotterdamThe Netherlands
  2. 2.Section Pathophysiology of BehaviorUniversity Hospital Dijkzigt and Erasmus University RotterdamRotterdamThe Netherlands
  3. 3.Department of Internal Medicine IUniversity Hospital Dijkzigt and Erasmus University RotterdamRotterdamThe Netherlands
  4. 4.Department of Clinical NeurophysiologyUniversity Hospital Dijkzigt and Erasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations