Skip to main content
Log in

Production of relativistic antihydrogen atoms by pair production with positron capture and measurement of the Lamb shift

  • Section 4: Routes To Antihydrogen
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

A beam of relativistic antihydrogen atoms — the bound state (\(\bar p\)e+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3Z 2 pb for antiproton momenta about 6 GeV/c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Dominik Becker, Razvan Bucoveanu, … Quirin Weitzel

References

  1. C.T. Munger, M. Mandelkern, J. Schultz, G. Zioulas, T.A. Armstrong, M.A. Hasan, R.A. Lewis and G.A. Smith, Fermilab National Laboratory Proposal E862.

  2. I.A. Schmidt, S.J. Brodsky and C.T. Munger, Phys. Rev. D, to be submitted.

  3. V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii,Relativistic Quantum Theory, Part 1, 2nd Ed. (Pergamon Press, Oxford, 1979) p. 212.

    Google Scholar 

  4. G. Bertulani and C.A. Baur, Z. Phys. A330 (1988) 777; Phys. Rep. 163 (1988) 299. J. Eichler, Phys. Rep. 193 (1990) 255.

    Google Scholar 

  5. J. Peoples Jr., in:Proc. of the Workshop on the Design of a Low Energy Antimatter Facility, ed. David B. Cline (World Scientific, Singapore, 1986).

    Google Scholar 

  6. T. Yamabe, A. Tachibana and H.J. Silverstone, Phys. Rev. A16 (1977) 877; R. Haydock and D.R. Kingham, J. Phys. B14 (1981) 385.

    ADS  Google Scholar 

  7. E. Acerbi, C. Birattari, B. Candoni, M. Castiglioni, D. Cutrupi and C. Succi, Lettere Nuovo Cimento 10 (1974) 598; G.H. Gillespie and M. Inokuti, Phys. Rev. A22 (1980) 2430.

    Google Scholar 

  8. M. Macri, in: Proc. of CERN Accelerator School, Geneva, 1983.

  9. K. Hikasa et al., Phys. Lett. B239 (1990), table III.5.

  10. J. Litt and R. Meunier, in: Annu. Rev. Nucl. Sci. 23 (1973).

  11. G. Raisbeck and F. Yiou, Phys. Rev. A4 (1958) 1971; W. Heitler,The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954) eq. V.22.45; F. Sauter, Ann. Phys. (Paris) 9 (1931) 454, eq. 39.

    Google Scholar 

  12. A. Belkacem and H. Gould, Lawrence Berkeley Laboratory BEVALAC proposal 954H.

  13. RHIC Conceptual Design Report, Brookhaven National Laboratory Report BNL 52195, table IV. 3–10 and pp. 118–120; M. Fatyga, R.J. Rhoades-Brown and M.J. Tannenbaum, Brookhaven National Laboratory Report BNL 52247.

  14. W.E. Lamb Jr. and R.C. Retherford, Phys. Rev. 60 (1941) 817.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported in part by Department of Energy contract DE-AC03-76SF00515 (SLAC).

Work supported by Fondo Nacional de Investigación Científica y Tecnológica, Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munger, C.T., Brodsky, S.J. & Schmidt, I. Production of relativistic antihydrogen atoms by pair production with positron capture and measurement of the Lamb shift. Hyperfine Interact 76, 175–180 (1993). https://doi.org/10.1007/BF02316716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316716

Keywords

Navigation