Hyperfine Interactions

, Volume 76, Issue 1, pp 175–180 | Cite as

Production of relativistic antihydrogen atoms by pair production with positron capture and measurement of the Lamb shift

  • Charles T. Munger
  • Stanley J. Brodsky
  • Ivan Schmidt
Section 4: Routes To Antihydrogen

Abstract

A beam of relativistic antihydrogen atoms — the bound state (\(\bar p\)e+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3Z2 pb for antiproton momenta about 6 GeV/c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %.

Keywords

Thin Film Pair Production Continuum State Storage Ring Antihydrogen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.T. Munger, M. Mandelkern, J. Schultz, G. Zioulas, T.A. Armstrong, M.A. Hasan, R.A. Lewis and G.A. Smith, Fermilab National Laboratory Proposal E862.Google Scholar
  2. [2]
    I.A. Schmidt, S.J. Brodsky and C.T. Munger, Phys. Rev. D, to be submitted.Google Scholar
  3. [3]
    V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii,Relativistic Quantum Theory, Part 1, 2nd Ed. (Pergamon Press, Oxford, 1979) p. 212.Google Scholar
  4. [4]
    G. Bertulani and C.A. Baur, Z. Phys. A330 (1988) 777; Phys. Rep. 163 (1988) 299. J. Eichler, Phys. Rep. 193 (1990) 255.Google Scholar
  5. [5]
    J. Peoples Jr., in:Proc. of the Workshop on the Design of a Low Energy Antimatter Facility, ed. David B. Cline (World Scientific, Singapore, 1986).Google Scholar
  6. [6]
    T. Yamabe, A. Tachibana and H.J. Silverstone, Phys. Rev. A16 (1977) 877; R. Haydock and D.R. Kingham, J. Phys. B14 (1981) 385.ADSGoogle Scholar
  7. [7]
    E. Acerbi, C. Birattari, B. Candoni, M. Castiglioni, D. Cutrupi and C. Succi, Lettere Nuovo Cimento 10 (1974) 598; G.H. Gillespie and M. Inokuti, Phys. Rev. A22 (1980) 2430.Google Scholar
  8. [8]
    M. Macri, in: Proc. of CERN Accelerator School, Geneva, 1983.Google Scholar
  9. [9]
    K. Hikasa et al., Phys. Lett. B239 (1990), table III.5.Google Scholar
  10. [10]
    J. Litt and R. Meunier, in: Annu. Rev. Nucl. Sci. 23 (1973).Google Scholar
  11. [11]
    G. Raisbeck and F. Yiou, Phys. Rev. A4 (1958) 1971; W. Heitler,The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954) eq. V.22.45; F. Sauter, Ann. Phys. (Paris) 9 (1931) 454, eq. 39.Google Scholar
  12. [12]
    A. Belkacem and H. Gould, Lawrence Berkeley Laboratory BEVALAC proposal 954H.Google Scholar
  13. [13]
    RHIC Conceptual Design Report, Brookhaven National Laboratory Report BNL 52195, table IV. 3–10 and pp. 118–120; M. Fatyga, R.J. Rhoades-Brown and M.J. Tannenbaum, Brookhaven National Laboratory Report BNL 52247.Google Scholar
  14. [14]
    W.E. Lamb Jr. and R.C. Retherford, Phys. Rev. 60 (1941) 817.CrossRefADSGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • Charles T. Munger
    • 1
  • Stanley J. Brodsky
    • 1
  • Ivan Schmidt
    • 2
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA
  2. 2.Universidad Federico Santa MaríaValparaísoChile

Personalised recommendations