Hyperfine Interactions

, Volume 76, Issue 1, pp 175–180 | Cite as

Production of relativistic antihydrogen atoms by pair production with positron capture and measurement of the Lamb shift

  • Charles T. Munger
  • Stanley J. Brodsky
  • Ivan Schmidt
Section 4: Routes To Antihydrogen


A beam of relativistic antihydrogen atoms — the bound state (\(\bar p\)e+) — can be created by circulating the beam of an antiproton storage ring through an internal gas target. An antiproton which passes through the Coulomb field of a nucleus will create e+e pairs, and antihydrogen will form when a positron is created in a bound instead of continuum state about the antiproton. The cross section for this process is roughly 3Z2 pb for antiproton momenta about 6 GeV/c. A sample of 600 antihydrogen atoms in a low-emittance, neutral beam will be made in 1995 as an accidental byproduct of Fermilab experiment E760. We describe a simple experiment, Fermilab Proposal P862, which can detect this beam, and outline how a sample of a few-104 atoms can be used to measure the antihydrogen Lamb shift to 1 %.


Thin Film Pair Production Continuum State Storage Ring Antihydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C.T. Munger, M. Mandelkern, J. Schultz, G. Zioulas, T.A. Armstrong, M.A. Hasan, R.A. Lewis and G.A. Smith, Fermilab National Laboratory Proposal E862.Google Scholar
  2. [2]
    I.A. Schmidt, S.J. Brodsky and C.T. Munger, Phys. Rev. D, to be submitted.Google Scholar
  3. [3]
    V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii,Relativistic Quantum Theory, Part 1, 2nd Ed. (Pergamon Press, Oxford, 1979) p. 212.Google Scholar
  4. [4]
    G. Bertulani and C.A. Baur, Z. Phys. A330 (1988) 777; Phys. Rep. 163 (1988) 299. J. Eichler, Phys. Rep. 193 (1990) 255.Google Scholar
  5. [5]
    J. Peoples Jr., in:Proc. of the Workshop on the Design of a Low Energy Antimatter Facility, ed. David B. Cline (World Scientific, Singapore, 1986).Google Scholar
  6. [6]
    T. Yamabe, A. Tachibana and H.J. Silverstone, Phys. Rev. A16 (1977) 877; R. Haydock and D.R. Kingham, J. Phys. B14 (1981) 385.ADSGoogle Scholar
  7. [7]
    E. Acerbi, C. Birattari, B. Candoni, M. Castiglioni, D. Cutrupi and C. Succi, Lettere Nuovo Cimento 10 (1974) 598; G.H. Gillespie and M. Inokuti, Phys. Rev. A22 (1980) 2430.Google Scholar
  8. [8]
    M. Macri, in: Proc. of CERN Accelerator School, Geneva, 1983.Google Scholar
  9. [9]
    K. Hikasa et al., Phys. Lett. B239 (1990), table III.5.Google Scholar
  10. [10]
    J. Litt and R. Meunier, in: Annu. Rev. Nucl. Sci. 23 (1973).Google Scholar
  11. [11]
    G. Raisbeck and F. Yiou, Phys. Rev. A4 (1958) 1971; W. Heitler,The Quantum Theory of Radiation (Clarendon Press, Oxford, 1954) eq. V.22.45; F. Sauter, Ann. Phys. (Paris) 9 (1931) 454, eq. 39.Google Scholar
  12. [12]
    A. Belkacem and H. Gould, Lawrence Berkeley Laboratory BEVALAC proposal 954H.Google Scholar
  13. [13]
    RHIC Conceptual Design Report, Brookhaven National Laboratory Report BNL 52195, table IV. 3–10 and pp. 118–120; M. Fatyga, R.J. Rhoades-Brown and M.J. Tannenbaum, Brookhaven National Laboratory Report BNL 52247.Google Scholar
  14. [14]
    W.E. Lamb Jr. and R.C. Retherford, Phys. Rev. 60 (1941) 817.CrossRefADSGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • Charles T. Munger
    • 1
  • Stanley J. Brodsky
    • 1
  • Ivan Schmidt
    • 2
  1. 1.Stanford Linear Accelerator CenterStanford UniversityStanfordUSA
  2. 2.Universidad Federico Santa MaríaValparaísoChile

Personalised recommendations