Hyperfine Interactions

, Volume 76, Issue 1, pp 115–125 | Cite as

Laser-cooled positron source

  • D. J. Wineland
  • C. S. Weimer
  • J. J. Bollinger
Section 3: Positron Accumulation And Positronium


We examine, theoretically, the feasibility of producing a sample of cold (⩽4 K), high-density (≈1010/cm3) positrons in a Penning trap. We assume9Be+ ions are first loaded into the trap and laser-cooled to approximately 10 mK where they form a uniform density column centered on the trap axis. Positrons from a moderator are then injected into the trap along the direction of the magnetic field through an aperture in one endcap of the trap so that they intersect the9Be+ column. Positron/9Be+ Coulomb collisions extract axial energy from the positrons and prevent them from escaping back out the entrance aperture. Cooling provided by cyclotron radiation and sympathetic cooling with the laser-cooled9Be+ ions causes the positrons to eventually coalesce into a cold column along the trap axis. We present estimates of the efficiency for capture of the positrons and estimates of densities and temperatures of the resulting positron column. Positrons trapped in this way may be interesting as a source for antihydrogen production, as an example of a quantum plasma, and as a possible means to produce a bright beam of positrons by leaking them out along the axis of the trap.


Radiation Magnetic Field Thin Film Density Column Uniform Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.P. Mills Jr., Hyp. Int. 44 (1988) 107; P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60 (1988) 701, and references therein.Google Scholar
  2. [2]
    A. Rich, R.S. Conti, D.W. Gidley, M. Skalsey, J. Van House and P.W. Zitzewitz, Hyp. Int. 44 (1988) 125.Google Scholar
  3. [3]
    L. Dou, W.E. Kauppila, C.K. Kwan and T.S. Stein, Phys. Rev. Lett. 68 (1992) 2913; T.S. Stein, private communication.CrossRefADSGoogle Scholar
  4. [4]
    G. Gabrielse, S.L. Rolston, L. Haarsma and W. Kells, Phys. Lett. A129 (1988) 38.ADSGoogle Scholar
  5. [5]
    M.E. Glinsky and T.M. O'Neil, Phys. Fluids B3 (1991) 1279.ADSGoogle Scholar
  6. [6]
    C.M. Surko, M. Leventhal, A. Passner and F.J. Wysocki, in:Non-neutral Plasma Physics, eds. C.W. Roberson and C.F. Driscoll (AIP Press, New York, 1988) p. 75; C.M. Surko, M. Leventhal and A. Passner, Phys. Rev. Lett. 62 (1989) 901; T.J. Murphy and C.M. Surko, Phys. Rev. Lett. 67 (1991) 2954.Google Scholar
  7. [7]
    T.E. Cowan et al., Bull. Am. Phys. Soc. 34 (1989) 1812.Google Scholar
  8. [8]
    J.J. Bollinger, L.R. Brewer, J.C. Bergquist, W.M. Itano, D.J. Larson, S.L. Gilbert and D.J. Wineland, in:Intense Positron Beams, eds. E.H. Ottewitte and W. Kells (World Scientific, Singapore, 1988) p. 63.Google Scholar
  9. [9]
    P.B. Schwinberg, R.S. Van Dyck and H.G. Dehmelt, Phys. Lett. 81A (1981) 119.ADSGoogle Scholar
  10. [10]
    G. Gabrielse and B.L. Brown, in:The Hydrogen Atom, eds. G.F. Bassani, M. Inguscio and T.W. Hänsch (Springer, Berlin, 1989) p. 196.Google Scholar
  11. [11]
    R.S. Conti, B. Ghaffari and T.D. Steiger, Nucl. Instr. Meth. Phys. Res. A299 (1990) 420; B. Ghaffari, R.S. Conti and T.D. Steiger, Bull. Am. Phys. Soc. 37 (1992) 1148.ADSGoogle Scholar
  12. [12]
    A.P. Mills Jr., in:Positron Scattering in Gases, eds. J.W. Humberston and M.R.C. McDowell (Plenum Press, New York, 1984) p. 121.Google Scholar
  13. [13]
    D.J. Heinzen, J.J. Bollinger, F.L. Moore, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 66 (1991) 2080; erratum 66 (1991) 3087.ADSGoogle Scholar
  14. [14]
    H.G. Dehmelt, P.B. Schwinberg and R.S. Van Dyck Jr., Int. J. Mass Spectrom. Ion Phys. 26 (1978) 107.CrossRefGoogle Scholar
  15. [15]
    T.M. O'Neil, Phys. Fluids 24 (1981) 1447.ADSMATHGoogle Scholar
  16. [16]
    D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 57 (1986) 70.CrossRefADSGoogle Scholar
  17. [17]
    T.M. O'Neil and P.G. Hjorth, Phys. Fluids 13 (1985) 3241.ADSMathSciNetGoogle Scholar
  18. [18]
    S.L. Gilbert, J.J. Bollinger and D.J. Wineland, Phys. Rev. Lett. 60 (1988) 2022.CrossRefADSGoogle Scholar
  19. [19]
    P.B. Schwinberg, Thesis, Department of Physics, University of Washington, USA.Google Scholar
  20. [20]
    J.H. Malmberg and T.M. O'Neil, Phys. Rev. Lett. 39 (1977) 1333.CrossRefADSGoogle Scholar
  21. [21]
    N.A. Krall and T.W. Trivelpiece,Principles of Plasma Physics McGraw-Hill, New York, (1973) p. 292.Google Scholar
  22. [22]
    M.E. Glinsky, T.M. O'Neil, M.N. Rosenbluth, K. Tsuruta and S. Ichimaru, Phys. Fluids B4 (1992) 1156.ADSGoogle Scholar
  23. [23]
    B.R. Beck, J. Fajans and J.H. Malmberg, Phys. Rev. Lett. 68 (1992) 317.ADSGoogle Scholar
  24. [24]
    J.J. Bollinger, D.J. Heinzen, W.M. Itano, S.L. Gilbert and D.J. Wineland, IEEE Trans. Instr. Measurement 40 (1991) 126.Google Scholar
  25. [25]
    J. Tan and G. Gabrielse, Phys. Rev. Lett. 67 (1991) 3090.CrossRefADSGoogle Scholar
  26. [26]
    D.J. Heinzen and D.J. Wineland, Phys. Rev. A42 (1990) 2977.ADSGoogle Scholar

Copyright information

© J.C. Baltzer AG, Science Publishers 1993

Authors and Affiliations

  • D. J. Wineland
    • 1
  • C. S. Weimer
    • 1
  • J. J. Bollinger
    • 1
  1. 1.Time and Frequency Division, NISTBoulderUSA

Personalised recommendations