Semigroup Forum

, Volume 7, Issue 1–4, pp 153–163 | Cite as

The kernel of a homomorphism on a finite semigroup

  • John Rhodes
Research Articles

Keywords

Finite Semigroup 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Clifford, A.H. and G.B. Preston,The Algebraic Theory of Semigroups, Amer. Math. Soc., Mathematical Surveys No. 7, Vol. I (Providence, R.I., 1961).Google Scholar
  2. [2]
    Hall, T.E.,On Congruences on Finite Semigroups, to appear in Semigroup Forum (probably with revised title).Google Scholar
  3. [3]
    Krohn, K., J. Rhodes and B. Tilson,Lectures on the Algebraic Theory of Finite Semigroups and Finite State Machines, Chapters 1, 5–9 (Chapter 6 with M.A. Arbib),Algebraic Theory of Machines, Languages and Semigroups (M.A. Arbib, Editor), Academic Press (1968).Google Scholar
  4. [4]
    Petrich, M.,The Translational Hull in Semigroups and Rings, Semigroup Forum 1 (1970), 283–360.MATHMathSciNetGoogle Scholar
  5. [5]
    Rhodes, J.,Some Results on Finite Semigroups, J. Algebra 4 (1966), 471–504.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    Rhodes, J.,A Proof of the Fundamental Lemma of Complexity (weak version)for Arbitrary Finite Semigroups, J. Combinatorial Theory, Series A, 10 (1971), 22–73.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    —,A Proof of the Fundamental Lemma of Complexity (strong version)for Arbitrary Finite Semigroups, J. Combinatorial Theory, Series A (in press).Google Scholar
  8. [8]
    Schützenberger, M.P.,Sur les homomorphismes d'un demi-groupe sur un group, C.R. Acad. Sc. 246 (1958), 2442–44.MATHGoogle Scholar
  9. [9]
    Tilson, B.,Decomposition and Complexity of Finite Semigroups, (Survey Article), Semigroup Forum 3 (1971), 189–250MATHMathSciNetGoogle Scholar
  10. [10]
    —,The Inversion Principle and its Application to Semigroup Decomposition Complexity, to be submitted to J. of Algebra.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1974

Authors and Affiliations

  • John Rhodes
    • 1
  1. 1.Mathematics Dept.University of CaliforniaBerkeley

Personalised recommendations