Atlantic Economic Journal

, Volume 5, Issue 1, pp 61–64 | Cite as

Using phase space for interpreting a non-autonomous dynamic system

  • Don E. Roper


Dynamic System Phase Space International Economic Public Finance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Cagan, “The Monetary Dynamics of Hyperinflation,” inStudies in the Quantity Theory of Money, M. Friedman, ed., University of Chicago Press, 1956.Google Scholar
  2. [2]
    E. Feige, “Expectations and Adjustments in the Monetary Sector,”American Economic Review, LVII, May 1967.Google Scholar
  3. [3]
    A. T. Fuller, “Phase Space in the Theory of Optimal Control,”International Journal of Electronics, 1960.Google Scholar
  4. [4]
    M. W. Hirsch and S. Smale,Differential Equations, Dynamical Systems, and Linear Algebra, New York: Academic Press, 1974.Google Scholar
  5. [5]
    L. S. Pontryagin,Ordinary Differential Equations, Massachusetts: Addison-Wesley, 1962.Google Scholar
  6. [6]
    David A. Sanchez,Ordinary Differential Equations and Stability Theory, W. H. Freeman and Co., 1967.Google Scholar
  7. [7]
    R. Waud, “Misspecification in the ‘Partial Adjustment’ and ‘Adaptive Expectations’ Models,”International Economic Review, 9, June 1968.Google Scholar

Copyright information

© Atlantic Economic Society 1977

Authors and Affiliations

  • Don E. Roper

There are no affiliations available

Personalised recommendations