Advertisement

Chromatographia

, Volume 40, Issue 11–12, pp 724–728 | Cite as

Prediction of polymer-solute thermodynamic parametersχ;12 and Ω;1∞; from inverse gas chromatography data. Application to poly(propylene oxide)-solute system

  • E. Morales
  • J. L. Acosta
Originals

Summary

The solvation equation has been applied to the solubility of 13 probes in poly(propylene oxide). It has been shown that log Vg0 values can be predicted with reasonable precision using this equation, while the results are not so good for predicting thermodynamic parameters. The high values found when applying regression analysis to the independent parameter c, indicates that parameters exist with a marked effect on retention but not included in the equation.

Key Words

Inverse gas chromatography Retention prediction Thermodynamic values Poly(propylene oxide) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Tompa, “Polymer Solutions”, Butterworths, London (1956).Google Scholar
  2. [2]
    G. Gee, Trans. Faraday Soc.42, 585 (1946).Google Scholar
  3. [3]
    M. Galin, Polymer24, 865 (1983).CrossRefGoogle Scholar
  4. [4]
    A. J. Ashworth, G. J. Price, Macromolecules19, 358 (1986).Google Scholar
  5. [5]
    I. H. Romdhane, R. P. Danner, J. Chem. Eng. Data36, 15 (1991).CrossRefGoogle Scholar
  6. [6]
    R. D. Newman, J. M. J. Prausnitz, J. Paint. Technol.45, 34 (1973).Google Scholar
  7. [7]
    G. Szasz, K. Valkó, O. Papp, J. Chromatogr.243, 347 (1982).Google Scholar
  8. [8]
    F. S. Calixto, A. G. Raso, Chromatographia15, 347 (1982).CrossRefGoogle Scholar
  9. [9]
    M. Kuchar, V. Rejholec, E. Kraus, J. Chromatogr.183, 250 (1983).Google Scholar
  10. [10]
    J. M. Takàcs, J. Chromatogr. Sci.29, 382 (1991).Google Scholar
  11. [11]
    M. H. Abraham, C. M. Du, J. P. Osei-Owusu, P. Sakellariou, W. J. Shuely, Eur. Polym. J.30, 635 (1994).Google Scholar
  12. [12]
    M. H. Abraham, G. S. Whiting, R. M. Doherty, W. J. Shuely, J. Chem. Soc., Perkin Trans. II, 1451 (1990).Google Scholar
  13. [13]
    M. H. Abraham, G. S. Whiting, R. M. Doherty, W. J. Shuely, J. Chromatogr.587, 213, 229 (1991).Google Scholar
  14. [14]
    M. H. Abraham, P. L. Grellier, R. A. McGill, J. Chem. Soc., Perkin Trans. II, 197 (1987).Google Scholar
  15. [15]
    A. T. James, A. J. P. Martin, Biochem. J.50, 679 (1952).Google Scholar
  16. [16]
    P. J. Flory, J. Chem. Phys.9, 660 (1941).CrossRefGoogle Scholar
  17. [17]
    M. L. Huggins, J. Chem. Phys.9, 440 (1941).CrossRefGoogle Scholar
  18. [18]
    J. H. Dymond, E. B. Smith, “The Virial Coefficients of Pure Gases and Mixtures”, Clarendon Press, Oxford (1980).Google Scholar
  19. [19]
    M. L. Mcglashan, D. J. B. Potter, Proc. Royal Soc. London, Ser. A, 267, 468 (1962).Google Scholar
  20. [20]
    E. A. Guggenhein, C. J. Normal, J. Chem. Phys.42, 375 (1965).Google Scholar
  21. [21]
    J. A. Riddick, W. B. Bunger, “Techniques of Chemistry Vol. II, Organic Solvents”, J. Wiley & Sons, New York (1970).Google Scholar
  22. [22]
    R. A. Orwoll, P. J. Flory, J. Am. Chem. Soc.89, 6814 (1967).Google Scholar
  23. [23]
    J. Timmermans, “Physicochemical Constants of Pure Organic Compounds”, Elsevier, NY, Vol. I (1950) and Vol. II (1965).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • E. Morales
    • 1
  • J. L. Acosta
    • 1
  1. 1.Instituto de Ciencia y Tecnología de Polímeros C.S.I.C.MadridSpain

Personalised recommendations