Advertisement

Chromatographia

, Volume 40, Issue 11–12, pp 662–668 | Cite as

Effects of kinematic viscosity of the slurry on the packing efficiency of PEEK microbore columns for liquid chromatography

  • T. M. Zimina
  • Roger M. Smith
  • P. Myers
  • B. W. King
Originals

Summary

The kinematic viscosity of the slurry used for the packing of microbore columns for liquid chromatography has been correlated with the packing efficiency. The columns were packed into polyetheretherketone (PEEK) tubing with an internal diameter of 0.5 mm using unbonded and bonded spherical silica gels under constant pressure conditions. Higher efficiencies were obtained using slurries suspended in aqueous solutions of surfactants, such as polyoxyethylene sorbitane monolaurte (Tween-20) and sodium dodecyl sulphate, in comparison with organic solvents usually used for column packing. The concentration dependencies of the relative kinematic viscosities of six slurries were compared using capillary viscometry. The slurries with low relative viscosities possessed rheological properties which enabled high packing densities, typical of a stable dense random packing arrangement, to be obtained at moderate packing pressures. The unusually low relative viscosities are discussed in terms of a “porous hydrodynamic bearing” model. The techniques used should also be generally applicable to the slurry packing of conventional columns.

Key Words

Column liquid chromatography Microbore columns Column packing Slurry viscosity Surfactants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. V. Novotny, Analytical characteristics of packed capillary columns. In: Microcolumn separations: columns, instrumentation, and ancillary techniques. Eds.: M. V. Novotny and D. Ishii. J. Chromatography Library, Vol. 30., Elsevier, Amsterdam, 1985, p. 19.Google Scholar
  2. [2]
    R. Gill, J. Chromatogr.354, 169 (1986).Google Scholar
  3. [3]
    F. Andreolini, C. Borra, M. Novotny, Anal. Chem.59, 2428 (1987).Google Scholar
  4. [4]
    K-E. Karlsson, M. Novotny, Anal. Chem.60, 1662 (1988).CrossRefGoogle Scholar
  5. [5]
    S. Hoffmann, L. Blomberg, Chromatographia24, 416 (1987).Google Scholar
  6. [6]
    R. F. Meyer, R. A. Hartwick, Anal. Chem.56, 2211 (1984).CrossRefGoogle Scholar
  7. [7]
    R. P. W. Scott, P. Kucera, J. Chromatogr.169, 51 (1979).Google Scholar
  8. [8]
    C. Borra, S. M. Han, M. Novotny, J. Chromatogr.385, 75 (1987).CrossRefGoogle Scholar
  9. [9]
    J. H. Knox, High-performance liquid chromatography, Edinburgh University Press, Edinburgh, 1978, p. 147.Google Scholar
  10. [10]
    C. F. Poole, S. A. Schuette, Contemporary practice of chromatography, Elsevier, Amsterdam, 1984, p. 232.Google Scholar
  11. [11]
    K. Kuwata, M. Uebori, Y. Yamazaki, J. Chromatogr.211, 378 (1981).CrossRefGoogle Scholar
  12. [12]
    D. G. Thomas, J. Colloid Sci.20, 267 (1965).CrossRefGoogle Scholar
  13. [13]
    R. St. J. Manley, S. G. Mason, Can. J. Chem.32, 763 (1954).Google Scholar
  14. [14]
    R. F. Fedors, J. Colloid Interface Sci.46, 545 (1974).CrossRefGoogle Scholar
  15. [15]
    J. Happel, J. Appl. Phys.28, 1288 (1957).CrossRefGoogle Scholar
  16. [16]
    R. K. Iler, The chemistry of silica: solubility, polymerisation, colloid and surface properties and biochemistry, Wiley, New York, 1979.Google Scholar
  17. [17]
    H. Rumpf, Particle technology, Chapman and Hall, London, 1990.Google Scholar
  18. [18]
    R. M. German, Particle packing characteristics, Metal Powder Industries Federation, Princeton, NJ, 1989.Google Scholar
  19. [19]
    A. K. Van Helden, J. W. Jansen, A. J. Vrij, J. Colloid Interface Sci.81, 354 (1981).Google Scholar
  20. [20]
    G. Cherbit, Fractals: non-integer dimensions and applications, Wiley, Chichester, 1991, p. 120.Google Scholar
  21. [21]
    A. Einstein, Ann. Phys. (Leipzig)19, 289 (1906).Google Scholar
  22. [22]
    G. K. Batchelor, J. Fluid Mech.83, 97 (1977).Google Scholar
  23. [23]
    W. B. Russel, A. P. Gast, J. Chem. Phys.84, 1815 (1986).CrossRefGoogle Scholar
  24. [24]
    N. J. Wagner, W. B. Russel, Physica A (Amsterdam)155, 475 (1989).Google Scholar
  25. [25]
    D. A. R. Jones, B. Leary, D. V. Boger, J. Colloid Interface Sci.147, 479 (1991).CrossRefGoogle Scholar
  26. [26]
    S. F. Lui, F. Lafuma, R. Auderbert, Colloid Polym. Sci.272, 192 (1994).Google Scholar
  27. [27]
    J. C. Giddings, Dynamics of Chromatography, Part 1, Marcel Dekker, New York, 1965, p. 233.Google Scholar
  28. [28]
    U. Bröckel, F. Löffer, Powder Technol.66, 53 (1991).Google Scholar
  29. [29]
    E. H. Ellison, D. B. Marshall, J. Phys. Chem.95, 808 (1991).CrossRefGoogle Scholar
  30. [30]
    J. Wang, B. Li, Wear146, 165 (1991).Google Scholar
  31. [31]
    S. Kaneko, Trans. ASME, J. Tribol.112, 624 (1990).Google Scholar
  32. [32]
    S. Kaneko, S. Obara, Trans. ASME, J. Tribol.112, 618 (1990).Google Scholar
  33. [33]
    A. L. Braun, Tribol. Int.15, 235 (1982).CrossRefGoogle Scholar
  34. [34]
    K. M. Yung, A. Cameron, J. Lubr. Technol.101, 99 (1979).Google Scholar
  35. [35]
    J. H. Knox, Kinetic factors influencing column design and operation. In: Techniques in liquid chromatography. Ed.: C. F. Simpson, Wiley, Chichester, 1982, p. 36.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995

Authors and Affiliations

  • T. M. Zimina
    • 1
  • Roger M. Smith
    • 1
  • P. Myers
    • 2
  • B. W. King
    • 2
  1. 1.Department of ChemistryLoughborough University of TechnologyLoughboroughUK
  2. 2.Deeside Industrial ParkPhase Separations Ltd.ClwydUK

Personalised recommendations