Skip to main content
Log in

Thermodynamics of apolar viscoelastic dielectrics

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

In questo lavoro viene formulata una teoria termodinamica dei dielettrici viscoelastici apolari. Nell'ambito di tale teoria viene esaminata la possibilità di descrivere l'effetto Maxwell, ossia il fenomeno della birifrangenza dovuta al moto del continuo. A questo proposito si mostra che il termine proposto da Toupin per tener conto dell'effetto Maxwell non è in contrasto con la seconda legge della Termodinamica.

Summary

In this paper we propose a thermodynamic theory for apolar viscoelastic dielectrics. Within this framework we discuss the possibility of accounting for the Maxwell effect, i.e., the birefringence phenomenon due to the motion of the continuum in study. To this end we show that the proposal made by Toupin, in order to account for the Maxwell effect, does not contrast with the second law of Thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Toupin R. A. “The elastic dielectric,”J. Rational Mech. Anal., 5 (1956) pp. 849–913.

    MATH  MathSciNet  Google Scholar 

  2. Eringen A. C. “On the foundations of electroelastostatics,”Int. J. Engng. Sci., 1 (1963) pp. 127–153.

    Article  MathSciNet  Google Scholar 

  3. Toupin R. A. “A dynamical theory of elastic dielectrics,”Int. J. Engng. Sci., 1 (1963) pp. 101–126.

    Article  MathSciNet  Google Scholar 

  4. Tiersten H. F. “Coupled magnetomechanical equations for magnetically saturated insulators,”J. Math. Phys., 5 (1964) pp. 1298–1318.

    Article  MATH  MathSciNet  Google Scholar 

  5. Jordan N. F., andEringen A. C. “On the static nonlinear theory of electromagnetic thermoelastic solids,”Int. J. Engng. Sci., 2 (1964) pp. 59–95.

    MathSciNet  Google Scholar 

  6. Dixon R. C., andEringen A. C. “A dynamical theory of polar elastic dielectrics - 1,”Int. J. Engn. Sci., 3 (1965) pp. 359–377.

    MathSciNet  Google Scholar 

  7. Eastman D. E. “Ultrasonic study of the first-order and second-order magnetoelastic properties of yttrium iron garnet,”Phys. Rev., 148 (1966) pp. 530–542.

    Article  ADS  Google Scholar 

  8. Suhubi E. S. “Elastic dielectrics with polarization gradient,”Int. J. Engng. Sci., 7 (1969) pp. 993–997.

    Article  MATH  Google Scholar 

  9. Müller I. Thermodynamik, Bertelsmann Universitätsverlag, Düsseldorf (1973).

    Google Scholar 

  10. Tiersten H. F. “On the nonlinear equations of thermoelectroelasticity,”Int. J. Engng. Sci., 9 (1971) pp. 587–604.

    Article  MATH  MathSciNet  Google Scholar 

  11. Grot R. A., andEringen A. C. “Relativistic continuum mechanics - Part 1 - Mechanics and thermodynamics,”Int. J. Engng. Sci., 4 (1966) pp. 611–638.

    Google Scholar 

  12. Grot R. A., andEringen A. C. “Relativistic continuum mechanics - Part II - Electromagnetic interactions with matter,”Int. J. Engng. Sci., 4 (1966) pp. 639–670.

    Google Scholar 

  13. Curtis H. D., andLianis G. “Relativistic thermodynamics of derformable electromagnetic materials with memory,”Int. J. Engng. Sci., 9 (1971) pp. 451–468.

    Article  Google Scholar 

  14. Lianis G. “Relativistic thermodynamics of viscoelastic dieletrics,”Arch. Rational Mech. Anal., 55 (1974) pp. 300–331.

    Article  MATH  MathSciNet  Google Scholar 

  15. Landau L., andLifchitz E. Électrodinamique des milieux continus, Mir, Moscow (1969).

    Google Scholar 

  16. Truesdell C. “A new definition of a fluid. The Maxwellian fluid,”J. Math. Pures Appl., 30 (1951) pp. 111–158.

    MATH  MathSciNet  Google Scholar 

  17. Carrassi M., andMorro A. “The thermodynamic theory of the Maxwellian fluid,”Boll. U.M.I., 9 (1974) pp. 297–335.

    MathSciNet  Google Scholar 

  18. Gurtin M. E. “Thermodynamics and the possibility of spatial interaction in rigid heat conductors,”Arch. Rational Mech. Anal., 18 (1965) pp. 335–342.

    Article  MATH  MathSciNet  Google Scholar 

  19. Gurtin M. E. “Thermodynamics and the possibility of spatial interaction in elastic materials,”Arch. Rational Mech. Anal., 19 (1965) pp. 339–352.

    Article  MATH  MathSciNet  Google Scholar 

  20. Morro A. “Thermodynamics and spatial in to cation in viscoelastic materials,”Boll. U.M.I., 10 (1974) pp. 355–374.

    MathSciNet  Google Scholar 

  21. Coleman B. D., andNoll W. “The thermodynamics of elastic materials with heat conduction and viscosity,Arch. Rational Mech. Anal., 13 (1963) pp. 167–178.

    MathSciNet  Google Scholar 

  22. Truesdell C., andToupin R. A. The classical field theories,”Encyclopedia of Physics, edited by S. Flügge, Springer-Verlag, Berlin,III/1 (1960).

    Google Scholar 

  23. De Groot S. R., andMazur P. Nonequilibrium thermodynamics, North-Holland Publishing Company, Amsterdam (1963).

    Google Scholar 

  24. Coleman B. D., Dill E. H., andToupin R. A. “A phenomenological theory of streaming birefringence,”Arch. Rational Mech. Anal., 39 (1970) pp. 358–399.

    Article  Google Scholar 

  25. Tokuoka T. “Mechanical foundation of birefringence of clastic media and viscous media,”Int. J. Engng. Sci., 4 (1966) pp. 23–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Gruppo Nazionale per la Fisica Matematica of CNR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morro, A. Thermodynamics of apolar viscoelastic dielectrics. Meccanica 10, 120–127 (1975). https://doi.org/10.1007/BF02314750

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02314750

Keywords

Navigation