Skip to main content
Log in

Minimum theorems for displacement and plastic strain rate histories in structural elastoplasticity

  • Published:
Meccanica Aims and scope Submit manuscript

Sommario

Si usa il metodo degli elementi finiti per formulare problemi di analisi relativi a strutture elasto-plastiche soggette a prescritti programmi di carico, sotto le ipotesi restrittive:a) le superfici di plasticizzazione sono linearizzate a tratti, eb) la legge del flusso plastico è olonoma all'interno del singolo intervallo di tempo “finito”. Si danno formulazioni come problemi di complementarità lineare e come problemi di programmazione quadratica: due formulazioni sono in termini di storia delle velocità e dei coefficienti di attivazione plastica, altre due sono in termini di storia dei coefficienti di attivazione plastica soltanto. Si dimostra che le soluzioni sono caratterizzate da due principi di minimo per la storia delle velocità di deformazione. Dopo alcune osservazioni generali sui procedimenti di calcolo, il lavoro si conclude con dei suggerimenti per futuri sviluppi.

Summary

The finite element method approach is used to obtain formulations of analysis problems relative to elastic-plastic structures when subjected to prescribed programmes of loads, and under the restrictive hypotheses:a) the yielding surfaces are piecewise linearized, andb) the plastic flow-laws are supposed to be of holonomic type within a single “finite” time interval. For mulations are given as linear complementarity problems and quadratic programming problems: one pair of formulations in terms of velocity and plastic multiplier rate histories, and another pair in terms of plastic multiplier rate histories only. The solutions are shown to be characterized by two minimum principles for displacement and plastic strain rate histories. After some general remarks about computational procedures, the paper is concluded with some suggestions for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hodge P. G., Jr., “Numerical applications of minimum principles in plasticity,”Engineering Plasticity, edited byJ. Heyman, andF. A. Leckie, Cambridge Univ. Press, 1968, pp. 237–256.

  2. Maier G., “A quadratic programming approach for certain nonlinear structural problems,”Meccanica,3, No. 2, 1968, pp. 121–130.

    Article  MATH  MathSciNet  Google Scholar 

  3. Maier G., “Quadratic programming and theory of clastic-perfectly plastic structures,”Meccanica,3, No. 4, 1968, pp. 265–273.

    Article  MATH  MathSciNet  Google Scholar 

  4. Ceradini G., “A maximum principle for the analysis of elastic-plastic systems,”Meccanica,1, Nos. 3–4, 1966, pp. 77–82.

    MATH  Google Scholar 

  5. Haar A., andvon Kármán T., “Zur theorie der Spannungzustände in plastischen und sandartigen Medein,” Nachr. der Wiss. zu Göttingen, math.-phys. Klassc 204.

  6. Capurso M., “Principi di minimo per la soluzione incrementale dei problemi clasto-plastici,”Rendiconti Acc. Naz. dei Lincei, fascicoli 4–5, serie VIII, vol. XLVI, aprile-maggio 1969, pp. 417–560.

    Google Scholar 

  7. Maier G., “Some theorems for plastic strain rates and plastic strains,”Journal de Mécanique,8, no. 1, mars 1969, pp. 5–19.

    MATH  Google Scholar 

  8. Capurso M., andMaier G., “Incremental elastoplastic analysis and quadratic optimization,”Meccanica,5, No. 2, 1970, pp. 107–116.

    Google Scholar 

  9. Drucker D. C., “Variational principles in the mathematical theory of plasticity,” Proc. 1956 Symposium in Applied Mathematics,8, pp. 7–22, McGraw-Hill, New York, 1958.

    Google Scholar 

  10. Maier G., “A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes,”Meccanica,5, No. 1, 1970, pp. 54–66.

    Article  MATH  MathSciNet  Google Scholar 

  11. Maier G., “Incremental clastoplastic analysis in the presence of large displacements and physical instabilizing effects,”Int. Journal of Solids and Structures,7, 1971, pp. 345–372.

    MATH  MathSciNet  Google Scholar 

  12. Capurso M., “A quadratic programming approach to the impulsive loading analysis of rigid plastic structures,”Meccanica,7, No. 1, 1972, pp. 45–57.

    MATH  MathSciNet  Google Scholar 

  13. Koiter W. T., “General theorems for clastic-plastic solids,”Progress in Solid Mechanics, edited byI. N. Sneddon, andR. Hill, vol. 1, North-Holland Pub. Co., 1964, pp. 167–221.

  14. Maier G., “Linear flow-laws of elastoplasticity: a unified general approach,”Rendiconti Acc. Naz. dei Lincei, Classe Sci. fis. mat. nat., Serie VIII, vol. XLVII, fasc. 5, 1969, pp. 266–277.

  15. Maier G., “Constrained optimization in elastoplastic analysis,” Politecnico di Milano, Tech. Rep., No. 4, I.S.T.C., 1972.

  16. Hodge P.G., Jr. “A deformation bounding theorem for flow-law plasticity,”Q. Appl. Math.,24, 1966, pp. 171–174.

    MathSciNet  Google Scholar 

  17. De Donato O., andMaier G., “Finite element elastoplastic analysis by quadratic programming: the multistage method,” reprints of the 2nd Int. Conf. on Structural Mechanics in Reactor Technology, Berlin, 10–14 Sept. 1973, vol. 5 “Structural Analysis and Design,” part M “Method for Structural Analysis; Reliability Analysis,” paper M 2/8.

  18. Cottle R. W., “The principal pivoting method of quadratic programming,”Mathematics of the decision sciences, part I, Eds.G. B. Dantzig, andA. F. Veinott, Jr., Am. Math. Society, Providence, 1968.

    Google Scholar 

  19. Lemke C. E., “Recent results on complementary problems,”Nonlinear programming, Eds.J. B. Rosen, O. I. Mangasarian, andK. Ritter, Academic Press, New York, 1970.

    Google Scholar 

  20. Boot J. C. B.,Quadratic Programming, North-Holland, Amsterdam, 1964.

    Google Scholar 

  21. Künzi H. P., andKrelle W.,Nichtlineare Programmierung, Springer-Verlag, Berlin, 1962. (English translation:Nonlinear Programming, Blaisdell Pub., Walthan, 1966.)

    Google Scholar 

  22. Zienkiewicz O. C.,The finite element method in structural and continuum mechanics, McGraw-Hill, London, 1967.

    Google Scholar 

  23. Cottle R. W., private communication.

  24. De Donato O., andFranchi A., “A modified gradient method for finite element elastoplastic analysis by Quadratic Programming,” Tech. Rep. No. 6, I.S.T.C., July 1972, Politecnico di Milano, pubbl. No. 558.

  25. Maier G., “A minimum principle for incremental elastoplasticity with nonassociated flow-laws,”Jour. of Mech. and Phys. of Solids, 18, 1970, pp. 319–330.

    MATH  Google Scholar 

  26. Ritter K., “A method for solving maximum problems with nonconcave quadratic functions,”Z. Wabrsheinlichkeitstheorie werw. Geb.,4, 1966.

  27. Cottle R. W., andMylander W. C., “Ritter's cutting plane method for nonconvex quadratic programming,” Techn. Rep. Nos. 69-11, Operations Research House, Stanford Univ., California, July 1969.

    Google Scholar 

  28. Graves R. L., “A principal pivoting simplex algorithm for linear and quadratic programming,”Operations Research,15, 1967.

  29. Naghdi P. M., “Stress-strain relations in plasticity and thermoplasticity,”Plasticity, eds.E. H. Lee, andP. S. Symonds, Pergamon Press, 1960, pp. 121–165.

  30. Dantzig G. B., “Large scale systems and the computer revolution,”Proc. of the Princeton Sym. on Math. Programming, ed.H. W. Kuhn, Princeton Univ. Press, 1970, pp. 51–72.

  31. Lasdon L. S.,Optimization Theory for Large Systems, The McMillan Co., London, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polizzotto, C. Minimum theorems for displacement and plastic strain rate histories in structural elastoplasticity. Meccanica 10, 99–106 (1975). https://doi.org/10.1007/BF02314747

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02314747

Keywords

Navigation