Mathematical Notes

, Volume 64, Issue 4, pp 518–523 | Cite as

Nonindependent splittings and Gibbs states

  • K. -H. Fichtner
  • W. Freudenberg
  • V. Liebscher


We discuss a nonindependent (beam) splitting for which the related thinning leaves the class of equilibrium states for a one mode electromagnetic field invariant. The thinning affects only the parameters of the state, showing a nonlinear loss of energy. After the splitting, the energy values of both split parts are independent. This independence is a characteristic property of the geometric distribution, the distribution of energy values in the equilibrium state. Also, we observe that the class of states where the full states of the split parts are independent is formed by the so-called phase states.

Key words

Quantum splitting equilibrium state independent states dissipation of energy thinning quantum boson system Fock space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifschitz,Lehrbuch der Theoretischen Physik. Bd. V. Statistische Physik Teil 1, 2nd edition, Akademie-Verlag, Berlin (1984).Google Scholar
  2. 2.
    R. Lenk,Einführung in die Statistische Physik, VEB Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  3. 3.
    K.-H. Fichtner, “Charakterisierung Poissonscher zufälliger Punktfolgen und infinitesimale Verdünnungsschemata,”Math. Nachr. 68, 93–104 (1975).MATHMathSciNetGoogle Scholar
  4. 4.
    R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,”Phys. Rev. A (3),40, No. 3, 1371–1384 (1989).Google Scholar
  5. 5.
    J. R. Jeffers, N. Imoto, and R. Loudon, “Quantum optics of travelling-wave attenuators and amplifiers,”Phys. Rev. A (3),47, No. 4, 3346–3359 (1993).Google Scholar
  6. 6.
    K.-H. Fichtner, W. Freudenberg, and V. Liebscher,Beam Splittings and Time Evolutions of Boson Systems, Preprint Math/Inf/96/39, Forschungsergebnisse der Fakultät für Mathematik und Informatik, Jena (1996).Google Scholar
  7. 7.
    W. Freudenberg, “On a class of quantum Markov chains on the Fock space,” in:Quantum Probability & Related Topics (L. Accardi, editor), Vol. XI, World Sci. Publishing, Singapore (1994), pp. 215–237.Google Scholar
  8. 8.
    K.-H. Fichtner and W. Freudenberg, “Point processes and the position distribution of infinite boson systems,”J. Statist. Phys.,47, 959–978 (1987).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. Vourdas, “Phase States: An analytical approach in the unit disc,”Phys. Scripta,48, 84–86 (1993).Google Scholar
  10. 10.
    A. M. Perelomov,Generalized Coherent States and Their Applications, Texts Monographs Phys., Springer, Berlin-Heidelberg-New York (1986).Google Scholar
  11. 11.
    G. G. Emch,Mathematical and Conceptual Foundations of 20th Century Physics, Vol. 100, North-Holland Math. Stud, North-Holland, Amsterdam-New York-Oxford (1984).Google Scholar
  12. 12.
    K. R. Parthasarathy,An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel-Boston-Berlin (1992).Google Scholar
  13. 13.
    K.-H. Fichtner and W. Freudenberg, “Characterization of states of infinite boson systems. I. On the construction of states of boson systems,”Comm. Math. Phys.,137, 315–357 (1991).MathSciNetGoogle Scholar
  14. 14.
    T. S. Ferguson, “A characterization of the geometric distribution,”Amer. Math. Monthly,72, 256–260 (1965).MATHMathSciNetGoogle Scholar
  15. 15.
    K.-H. Fichtner, W. Freudenberg, and V. Liebscher, “Characterization of coherent and mixed coherent states by beam splittings,” (to appear).Google Scholar
  16. 16.
    V. Liebscher,Characterization of Coherent and Mixed Coherent States by Beam Splittings, Preprint Math/Inf/96/16, Forschungsergebnisse der Fakultät für Mathematik und Informatik, Jena (1996).Google Scholar
  17. 17.
    U. M. Titulaer and R. J. Glauber, “Density operators for coherent fields,”Phys. Rev.,145, No. 4, 1041–1050 (1966).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 1999

Authors and Affiliations

  • K. -H. Fichtner
    • 1
  • W. Freudenberg
    • 2
  • V. Liebscher
    • 1
  1. 1.Friedrich-Schiller-UniversitätJenaGermany
  2. 2.Brandenburgische Technische Universität CottbusCottbusGermany

Personalised recommendations