Studia Logica

, Volume 34, Issue 1, pp 11–23 | Cite as

On models with variable universe

  • Bernd Ingo Dahn
Article
  • 19 Downloads

Abstract

In this paper some parts of the model theory for logics based on generalised Kripke semantics are developed. Löwenheim-Skolem theorems and some applications of ultraproduct constructions for generalised Kripke models with variable universe are investigated using similar theorems of the model theory for classical logic. The results are generalizations of the theorems of [4].

Keywords

Mathematical Logic Model Theory Computational Linguistic Classical Logic Kripke Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. L. Bell andA. Slomson,Models and ultraproducts, Amsterdam-London 1969.Google Scholar
  2. [2]
    B. Dahn,Generalized Kripke-models,Bulletin de l'Académie Polonaise des Sciences, Série des sciences math., astr. et phys. Vol. 21 (1973), pp. 1073–1077.Google Scholar
  3. [3]
    B. Dahn,Generalized Kripke-models (abstract),Bulletin of the Section of Logic, Polish Academy of Sciences, Institute of Philosophy and Sociology, Vol. 3, No. 1 (1974).Google Scholar
  4. [4]
    B. Dahn,Contributions to the model theory for non-classical logics,Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Vol. 20, (1974), pp. 473–479.Google Scholar
  5. [5]
    D. M. Gabbay,Model theory for intuitionistic logic,Zeitschrift für mathematische Logik und Grundlagen der Mathematik, Vol. 18 (1972), pp. 49–54.Google Scholar
  6. [6]
    A. I. Mal'cev,Algebraic systems (in Russian), Moscow, 1970.Google Scholar
  7. [7]
    G. E. Sacks,Saturated model theory, Reading, Mass., 1972.Google Scholar

Copyright information

© Warzawa 1975

Authors and Affiliations

  • Bernd Ingo Dahn
    • 1
  1. 1.Sektion Mathematik der Humboldt-UniversitätBerlin

Personalised recommendations