Journal of Inherited Metabolic Disease

, Volume 3, Issue 1, pp 67–72 | Cite as

Biochemical studies in a patient with defects in the metabolism of acyl-CoA and sarcosine: Another possible case of glutaric aciduria type II

  • N. Gregersen
  • S. Kølvraa
  • K. Rasmussen
  • E. Christensen
  • N. J. Brandt
  • F. Ebbesen
  • F. H. Hansen


The clinical and biochemical abnormalities in a neonate, who died in coma accompanied by severe hypoglycaemia at the age of 3 days, are described. The study of the urinary metabolic profiles of organic acids and amino acids revealed that the excretion rates of glutaric acid, isovaleric acid, isovalerylglycine, 3-hydroxyisovaleric acid and isobutyric acid were very high. Increased excretion rates were also found for 2-methylbutyric acid, adipic acid, caproylglycine, 5-hydroxycaproic acid, caproic acid and butyric acid. The amino acid, sarcosine, was excreted in enhanced amounts and the patient had lactic aciduria, whereas the excretion of 3-hydroxybutyric acid was only moderately increased. This abnormal excretion pattern is consistent with a defect in the metabolism of acyl-CoAs and sarcosine. Normal activity of glutaryl-CoA dehydrogenase was found, excluding glutaryl-CoA dehydrogenase deficiency (glutaric aciduria type I).


Butyric Acid Severe Hypoglycaemia Adipic Acid Sarcosine Caproic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartlett, K. and Gompertz, D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias.Biochem. Med. 10 (1974) 15–20CrossRefPubMedGoogle Scholar
  2. Beinert, H. and Frisell, W. R. The functional identity of the electron transferring flavoproteins of the fatty acyl coenzyme A and sarcosine dehydrogenase systems.J. Biol. Chem. 237 (1962) 2988–2990PubMedGoogle Scholar
  3. Björkhem, I. and Danielsson, H. Ω- and Ω-1-oxidation of fatty acids by rat liver microsomes.Eur. J. Biochem. 17 (1970) 450–459PubMedGoogle Scholar
  4. Brandt, N. J., Brandt, S., Christensen, E., Gregersen, N. and Rasmussen, K. Glutaric aciduria in progressive choreoathetosis.Clin. Genet. 13 (1978) 77–80PubMedGoogle Scholar
  5. Brandt, N. J., Rasmussen, K., Brandt, S., KØlvraa, S. and SchØnheyder, F.d-Glyceric acidaemia and non-ketotic hyperglycinaemia.Acta Paediatr. Scand. 65 (1976) 17–22PubMedGoogle Scholar
  6. Christensen, E. and Brandt, N. J. Studies on glutaryl-CoA dehydrogenase in leucocytes, fibroblasts and amniotic fluid cells. The normal enzyme and the mutant form in patients with glutaric aciduria.Clin. Chim. Acta 88 (1978) 267–276CrossRefPubMedGoogle Scholar
  7. Goodman, S. I., Markey, S. P., Moe, P. G., Miles, B. S. and Teng, C. C. Glutaric aciduria. A ‘new’ disorder of amino acid metabolism.Biochem. Med. 12 (1975) 12–21CrossRefPubMedGoogle Scholar
  8. Goodman, S. I., Norenberg, M. D., Shikes, R. H., Breslich, D. J. and Moe, P. G. Glutaric aciduria: biochemical and morphologic considerations.J. Pediatr. 90 (1977) 746–750PubMedGoogle Scholar
  9. Gregersen, N. Specific and sensitive method for the determination of C6-C10-dicarboxylic acids in serum and urine by selected ion monitoring.J. Chromatogr. 162 (1979) 377–381PubMedGoogle Scholar
  10. Gregersen, N. and Brandt, N. J. Ketotic episodes in glutaryl-CoA dehydrogenase deficiency (glutaric aciduria).Pediatr. Res. 13 (1979) 977–981PubMedGoogle Scholar
  11. Gregersen, N., Brandt, N. J., Christensen, E., GrØn, I., Rasmussen, K. and Brandt, S. Glutaric aciduria: clinical and laboratory findings in two brothers.J. Pediatr. 90 (1977c) 740–745PubMedGoogle Scholar
  12. Gregersen, N., Ingerslev, J. and Rasmussen, K. Low molecular weight organic acids in the urine of the newborn.Acta Paediatr. Scand. 66 (1977a) 85–89PubMedGoogle Scholar
  13. Gregersen, N., Keiding, K. and KØlvraa, S.N-acylglycines: gas chromalographic/mass spectrometric identification and determination in urine by selected ion monitoring.Biomed. Mass Spectrom. 6 (1979) 439–443CrossRefPubMedGoogle Scholar
  14. Gregersen, N., KØlvraa, S. and Rasmussen, K. Mass fragmentographic analyses of short- and medium-chain raonoand di-carboxylic acids in urine. In Eggstein, M. and Liebich, H. M. (eds.)Proceedings from a Symposium about Mass Spectrometry and Combined Techniques in Medicine, Clinical Chemistry and Clinical Biochemistry. Tubingen, 1977b, pp.180–191Google Scholar
  15. Gregersen, N., Rosleff, F., KØlvraa, S., Hobolth, N., Rasmussen, K. and Lauritzen, R. Non-ketotic C6-C10-dicarboxylic aciduria: biochemical investigations of two cases.Clin. Chim. Acta 102 (1980) 179CrossRefPubMedGoogle Scholar
  16. Hall, C. L. and Kamin, H. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria.J. Biol. Chem. 250 (1975) 3476–3486PubMedGoogle Scholar
  17. Hegre, C. S., Halenz, D. K. and Lane, M. D. The enzymatic carboxylation of butyryl coenzyme A.J. Am. Chem. Soc. 81 (1959) 6526–6527CrossRefGoogle Scholar
  18. Hoskins, D. D. and Mackenzie, C. G. Solubilization and electron transfer flavoprotein requirement of mitochondrial sarcosine dehydrogenase and dimethylglycine dehydrogenase.J. Biol. Chem. 236 (1961) 177–183PubMedGoogle Scholar
  19. KØlvraa, S., Gregersen, N., Christensen, E. and GrØn, I. Calcium levulinate medication. A pitfall in the diagnosis of organic acidurias.Clin. Chim. Acta 77 (1977) 197–201CrossRefPubMedGoogle Scholar
  20. Landaas, S. Accumulation of 3-OH-isobutyric acid, 2-Me-3-OH-butyric acid and 3-OH-isovaleric acid in ketoacidosis.Clin. Chim. Acta 64 (1975) 143–154CrossRefPubMedGoogle Scholar
  21. Lazarow, P. B. Rat liver peroxisomes catalyze the Β-oxidation of fatty acids.J. Biol. Chem. 253 (1978) 1522–1528PubMedGoogle Scholar
  22. Mantagos, S., Genel, M. and Tanaka, K. Ethylmalonic-adipic aciduria: a new defect of butyrate oxidation associated with hypoglycemia.Pediatr. Res. 12 (1978) 453Google Scholar
  23. Pressman, D. and Lucas, H. J. The hydration of unsaturated compounds.J. Am. Chem. Soc. 62 (1940) 2069–2074CrossRefGoogle Scholar
  24. Przyrembel, H., Wendel, U., Becher, K., Bremer, H. J., Bruinvis, L., Ketting, D. and Wadman, S. K. Glutaric aciduria type II: report of a previously undescribed metabolic disorder.Clin. Chim. Acta 66 (1976) 227–239CrossRefPubMedGoogle Scholar
  25. Silverstein, R. M., Ryskiewicz, E. E. and Chaikin, S. W. 2-Pyrrolealdehyde, 3-hydroxymethylindoIe and 2-hydroxymethylpyrrole.J. Am. Chem. Soc. 76 (1954) 4485–4486CrossRefGoogle Scholar
  26. Tanaka, K. Disorders of organic acid metabolism. In Gaull, G. E. (ed.)Biology of Brain Dysfunction, vol. 3. Plenum Publishing Corporation, New York, 1975, pp. 145–214Google Scholar
  27. Tanaka, K., Kean, E. A. and Johanson, B. Jamaican vomiting sickness: biochemical investigation of two cases.N. Engl. J. Med. 295 (1977b) 461–467Google Scholar
  28. Tanaka, K., Mandell, R. and Shih, V. E. Metabolism of 1-[14C]- and 2-[14C]leucine in cultured skin fibroblasts from patients with isovaleric acidemia.J. Clin. Invest. 58 (1977a) 164–172Google Scholar
  29. Tanaka, K., Miller, E. M. and Isselbacher, K. J. Hypoglycin A: a specific inhibitor of isovaleryl-CoA dehydrogenase.Proc. Natl. Acad. Sci. 68 (1971) 20–24PubMedGoogle Scholar

Copyright information

© MTP Press Limited, International Medical Publishers 1980

Authors and Affiliations

  • N. Gregersen
    • 1
  • S. Kølvraa
    • 1
  • K. Rasmussen
    • 1
  • E. Christensen
    • 2
  • N. J. Brandt
    • 2
  • F. Ebbesen
    • 3
  • F. H. Hansen
    • 4
  1. 1.Research Laboratory for Metabolic Disorders, University Department of Clinical ChemistryAarhus KommunehospitalAarhusDenmark
  2. 2.Section of Clinical Genetics, Department of Pediatrics, Obstetrics and GynaecologyRigshospitaletCopenhagenDenmark
  3. 3.Department of NeonatologyRigshospitaletCopenhagenDenmark
  4. 4.Department of PediatricsRoskilde HospitalRoskildeDenmark

Personalised recommendations