, Volume 23, Issue 6, pp 395–400 | Cite as

HPLC in photokinetics: Determination of reaction mechanism and photochemical quantum yields of (E)-1-phenylpropene

  • G. Gauglitz
  • W. Schmid


A combined method of high-performance liquid chromatography and UV-absorption spectroscopy is described for use in dynamic systems. It provides a way of obtaining detailed mechanistic information as well as quantitative data (rate constants, quantum yields), even though neither mechanism nor photoproducts are known. The kinetic treatment of the photoreaction of (E)-1-phenylpropene was successful, showing a photo-isomerization and a parallel step. Information on this additional step is obtained by using HPLC to observe the changes in the concentrations of the reactants' selectivity. The necessity of process control is demonstrated.

Key Words

Column liquid chromatography Photokinetic data Reaction mechanism (E)-1-phenylpropene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Görner, D. Schulte-Frohlinde, J. Phys. Chem.83, 3107 (1979).Google Scholar
  2. [2]
    P. K. Das, R. S. Becker, J. Am. Chem. Soc.101, 6348 (1979).Google Scholar
  3. [3]
    R. Wilbrandt, N.-H. Jensen, C. Houee-Levin, Photochem. Photobiol.41, 175 (1985).Google Scholar
  4. [4]
    P. Courtot, J. Y. Salaun, Tetrahedron Lett.21, 1851 (1979).Google Scholar
  5. [5]
    T. Klink, G. Gauglitz, Z. Phys. Chem. N.F.,126, 177 (1981).Google Scholar
  6. [6]
    G. Gauglitz, R. Goes, W. Stooß, R. Raue, Z. Naturforsch.40a, 317 (1985).Google Scholar
  7. [7]
    L. Gracza, P. Ruff, Dtsch. Apoth. Ztg.46, 2541 (1981).Google Scholar
  8. [8]
    H. Mauser, Formale Kinetik, Vieweg Verlag, Düsseldorf, 1974.Google Scholar
  9. [9]
    K. R. A. Fehrmann, C. S. Garner, J. Am. Chem. Soc.83, 1276–1279 (1961).CrossRefGoogle Scholar
  10. [10]
    M. Azuma, K. Azuma, Photochem. Photobiol.40, 495–499 (1984).Google Scholar
  11. [11]
    H. Gross, H. Dürr, Tetrahedron Lett.22, 4683–4686 (1981).Google Scholar
  12. [12]
    L. Gracza, Arch. Pharm.315, 571–574 (1982).Google Scholar
  13. [13]
    S. Ebel, A. Werner-Busse, Fresenius' Z. Anal. Chem.318, 234 (1984).Google Scholar
  14. [14]
    J. Emmert, P. Quick, LaborPraxis6, 710–711 (1986).Google Scholar
  15. [15]
    Reviews on Chromatography, Section 4a: Automation and Computerization, J. Chrom.1–3 (1986).Google Scholar
  16. [16]
    G. Gauglitz, T. Klink, W. Schmid, J. Photochem.22, 285 (1983).CrossRefGoogle Scholar
  17. [17]
    G. Gauglitz, T. Klink, W. Schmid, Presenius Z. Anal. Chem.320, 670 (1985).Google Scholar
  18. [18]
    A. Ohno, Y. Ohnishi, G. Tsuchihashi, Tetrahedron Lett.8, 643 (1969).Google Scholar
  19. [19]
    K. P. Ghiggino et al., J. Chem. Soc. PerkinII, 88 (1978).Google Scholar
  20. [20]
    T. Kobayashi et al., Bull. Chem. Soc. Japan54, 1658 (1981).Google Scholar
  21. [21]
    G. Gauglitz, GIT Fachz. Lab.29, 126 (1985).Google Scholar
  22. [22]
    C. G. Hachard, C. A. Parker, Proc. Roy. Soc. London Ser. A235, 518 (1956).Google Scholar
  23. [23]
    G. Gauglitz, S. Hubig, Z. Phys. Chem. N.F.139, 237 (1984).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1987

Authors and Affiliations

  • G. Gauglitz
    • 1
  • W. Schmid
    • 1
  1. 1.Institut für physikalische und theoretische ChemieTübingenFRG

Personalised recommendations