Structural Chemistry

, Volume 8, Issue 6, pp 421–423 | Cite as

The structure of astatine azide, AtN3—A theoretical study

  • Thomas M. Klapötke
  • Axel Schulz


For the first time theoretical evidence for the experimentally hitherto unknown astatine azide, AtN3, the heaviest of all halogen azides, is presented. The structure and the vibrational data of AtN3 were computedab initio at RHF and electron-correlated MP2 levels of theory using a quasirelativistic (MWB) pseudopotential for astatine, where the basis functions for the valences andp electrons consist of the standard double-ζ basis set. For nitrogen a standard 6-31G(d) basis was used. The molecule represents a true minimum (NIMAG=0) at all levels of theory applied and is predicted to exist in a planartrans bentC s structure. Since hybrid functionals, which define the exchange functional as a linear combination of Hartree-Fock, local, and gradient-corrected exchange terms, are known to predict the experimental parameters best, we also computed astatine azide (At-N1-N2-N3) at the B3-LYP level; the results are as follows:d(At-N1)=2.267,d(N1–N2)=1.239,d(N2–N3)=1.146 å; ∠(A1-N1-N2)=111.6‡, ∠(N1-N2-N3)=171.9‡;v1,=157.4,v2=366.6,v3=559.0,v4=659.6,v5=1264.7,v6=2165.1 cm−1 (unscaled). The heat of formation was computed at B3-LYP level to be δH f o (AtN3)=+80 kcal mol−1.

Key words

Ab initio computations, astatine azide covalent azides halogen azides hybrid computations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. (a)
    Dehnicke, K.Angew. Chent. 1967,79, 253.Google Scholar
  2. 1. (b)
    Dehnicke, K.Adv. Inorg. Radiochem. 1983,26, 169.Google Scholar
  3. 2. (a)
    Tornieporth-Oetting, I. C.; Klapötke, T. M.Angew. Chem. Int. Ed. Engl. 1995,34, 511.CrossRefGoogle Scholar
  4. 2. (b)
    Tomieporth-Oetting, I. C.; Klapötke, T. M.Comm. Inorg. Chem. 1994,15, 137.Google Scholar
  5. 2. (c)
    Tornieporth-Oetting, I. C.; Klapötke, T. M. InCombustion Efficiency and Air Quality; Hargittai, I.; Vidoczy, T., eds., New York: Plenum Press, 1995, p. 51.Google Scholar
  6. 3.
    Otto, M.; Lotz, S. D.; Frenking, G.Inorg. Chem. 1992,31, 3647.CrossRefGoogle Scholar
  7. 4.
    Schulz, A.; Tornieporth-Oetting, I. C.; Klapötke, T. M.Inorg. Chem. 1995,34, 4343.CrossRefGoogle Scholar
  8. 5. (a)
    Wood, J. H.; Boring, A. M.Phys. Rev. 1978,B18, 2701.Google Scholar
  9. 5. (b)
    Bergner, A.; Dolg, M.; Kuechle, W.; Stoll, H.; Preuss, H.Mol. Phys. 1993,80, 1431.Google Scholar
  10. 5. (c)
    Kuechle, W.; Dolg, M.; Stoll, H.; Preuss, H.Mol. Phys. 1991,74, 1245.Google Scholar
  11. 6.
    Greenwood, N. N.; Eamshaw, A.Chemistry of the Elements; Oxford: Pergamon Press, 1984.Google Scholar
  12. 7.
    Dehnicke, K.Angew. Chem. 1979,91, 527.Google Scholar
  13. 8.
    Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.Gaussian 94, Revision B.2; Pittsburgh, PA; Gaussian, Inc., 1995.Google Scholar
  14. 9. (a)
    Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H.Mol. Phys. 1991,74, 1245.Google Scholar
  15. 9. (b)
    Dolg; M., Küchle, W.; Stoll, H.; Preuss, H.Mol. Phys. 1991,74, 1265.Google Scholar
  16. 9. (c)
    Dolg, M.Mol. Phys. 1996,88, 1645.Google Scholar
  17. 10. (a)
    Bauschlicher, C. W.; Partridge, H.Chem. Phys. Lett. 1994,231, 277.CrossRefGoogle Scholar
  18. 10. (b)
    Becke, A. D.J. Chem. Phys. 1993,98, 5648.Google Scholar
  19. 10. (c)
    Becke, A. D.Phys. Rev. A 1988,38, 3098.CrossRefGoogle Scholar
  20. 10. (d)
    Lee, C.; Yang, W.; Parr, R. G.Phys. Rev. B 1988,37, 785.Google Scholar
  21. 10. (e)
    Vosko, S. H.; Wilk, L.; Nusair, M.Can. J. Phys. 1980,58, 1200.Google Scholar
  22. 11.
    Klapötke, T. M.; Schulz, A.Quantenmechanische Methoden in der Hauptgruppenchemie; Heidelberg: Spektrum, 1996.Google Scholar
  23. 12.
    N2, B3-LYP/6-31G(d):-E=109.52413 au, ZPE=3.38 kcal mol−1; At2, B3-LYP/ECP78MWB:-E=22.12217 au, ZPE=0.21 kcal mol−1 (v=149.2 cm−1).Google Scholar
  24. 13.
    U.S. Department of Commerce, National Bureau of Standards.Selected Values of Chemical Thermodynamic Properties; Washington, DC: United States Government Printing Office, 1982.Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of GlasgowGlasgowUK

Personalised recommendations