Chromatographia

, Volume 25, Issue 1, pp 8–14 | Cite as

Isomer specific determination of polychlorinated technical mixtures such as polychloronaphthalenes by GC/MS

  • W. A. Heidmann
Originals

Summary

A procedure has been developed which allows the determination of the concentration and composition of polychlorinated technical mixtures in environmental samples avoiding the use of standard compounds as much as possible. A common MS response of the congeners of each degree of chlorination is assumed and determined by comparison of the FID and MS response of the respective congeners in a technical mixture. A measure for the variability of the assumed common MS response is derived so that its validity is proved in an objective manner. The method presented here allows the isomer specific determination of those polychlorinated technical mixtures in environmental samples which could not so far be determined in this way for lack of standards. The polychlorinated naphthalenes are quoted as illustration and a few data of residues in environmental samples are given.

Key Words

Gas chromatography/mass spectrometry Trace analysis of polychlorinated naphthalenes Isomer determination Environmental samples 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Schulte, R. Malisch, Fresenius Z. Anal. Chem.319, 54 (1984).CrossRefGoogle Scholar
  2. [2]
    W. A. Heidmann, Chromatographia22, 363 (1986).CrossRefGoogle Scholar
  3. [3]
    S. D. Cooper, M. A. Moseley, E. D. Pellizari, Anal. Chem.57, 2469 (1985).CrossRefGoogle Scholar
  4. [4]
    H. Beck, W. Mathar, Bundesgesundheitsbl.28, 1 (1985).Google Scholar
  5. [5]
    W. Zoller, W. Schäfer, T. Class, K. Ballschmiter, Fresenius Z. Anal. Chem.321, 247 (1985).CrossRefGoogle Scholar
  6. [6]
    J. E. Gebhart, T. L. Hayes, H. L. Alford-Stevens, W. L. Budde, Anal. Chem.57, 2464 (1985).CrossRefGoogle Scholar
  7. [7]
    U. A. Th. Brinkman, H. G. M. Reymer, J. Chromatogr.127, 203 (1976).CrossRefGoogle Scholar
  8. [8]
    Beratergremium für umweltrelevante Altstoffe (BUA, eds.), „Umweltrelevante Altstoffe: Auswahlkriterien und Stoffliste”, VCH-Verlag, Weinheim (1986).Google Scholar
  9. [9]
    O. Hutzinger, S. Safe, V. Zitko, Intern. J. Environ. Anal. Chem.2, 95 (1972).Google Scholar
  10. [10]
    U. A. Th. Brinkman, G. De Vries, A. De Kok, A. C. De Jong, J. Chromatogr.152, 97 (1978).CrossRefGoogle Scholar
  11. [11]
    M. Cooke, G. Nickless, A. M. Prescott, D. J. Roberts, J. Chromatogr.156, 293 (1978).CrossRefGoogle Scholar
  12. [12]
    M. Cooke, D. J. Roberts, M. E. Tillett, Sci. Tot. Environm.15, 237 (1980).Google Scholar
  13. [13]
    P. A. Kennedy, D. J. Roberts, M. Cooke, J. Chromatogr.249, 257 (1982).CrossRefGoogle Scholar
  14. [14]
    H. J. Crump-Wiesner, H. R. Feltz, M. L. Yates, Jour. Research U.S. Geol. Survey,1, 603 (1973).Google Scholar
  15. [15]
    R. Takeshita, H. Yoshida, J. Hyg. Chem.2, 365 (1977).Google Scholar
  16. [16]
    B. Jansson, L. Asplund, M. Olsson, Chemosphere13, 33 (1984).CrossRefGoogle Scholar
  17. [17]
    H. Reimlinger, G. King, Chem. Ber.95, 1043 (1962).Google Scholar
  18. [18]
    H. H. Hodgson, J. Walker, J. Chem. Soc.1934, 180.Google Scholar
  19. [19]
    G. Schomburg, H. Husmann, H. Borwitzky, Chromatographia12, 651 (1979).CrossRefGoogle Scholar
  20. [20]
    G. D. Martelli, M. G. Castelli, Biomed. Mass Spectrom.8, 347 (1981).CrossRefGoogle Scholar
  21. [21]
    J. E. Gebhard, T. L. Hayes, H. L. Alford-Stevens, W. L. Budde, Anal. Chem.57, 2458 (1985).Google Scholar
  22. [22]
    H. R. Buser, C. Rappe, Anal. Chem.52, 2257 (1980).CrossRefGoogle Scholar
  23. [23]
    H. R. Buser, C. Rappe, Anal. Chem.56, 442 (1984).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1988

Authors and Affiliations

  • W. A. Heidmann
    • 1
  1. 1.Chemisches Institut, Tierärztliche HochschuleHannoverFRG

Personalised recommendations