Journal of Inherited Metabolic Disease

, Volume 6, Issue 4, pp 149–152 | Cite as

Immunological evidence for an ornithine transcarbamylase lesion resulting in the formation of enzyme with smaller protein subunits

  • N. Hoogenraad
  • M. Luisa de Martinis
  • D. M. Danks


An unusual form of ornithine transcarbamylase deficiency was found in a male child who became unconscious at 8 months. Two maternal uncles had died during similar illnesses at 6 years and 11 years, respectively. Detailed studies of the enzyme showed 10% residual activity, a very lowKm for carbamyl phosphate (0.015 mmol/l) and near normal amounts of immunoreactive protein with a smaller than normal subunit (molecular weight 37 800 instead of 39 700). This information was obtained from a 10 mg liver biopsy core using protein separation on SDS-polyacrylamide gel, electrophoretic transfer to nitrocellulose filters and probing with antibody to the enzyme. Resolution of the exact mutation causing this change will be of interest to those who are studying the processing of mitochondrial enzymes during transport from the cytoplasm.


Biopsy Core Protein Subunit Male Child Mitochondrial Enzyme Immunoreactive Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bittner, M., Kupferer, P. and Morris, C. F.. Electrophoretic transfer of proteins and nucleic acids from slab gels to diazobenzyloximethyl cellulose or nitrocellulose sheets.Anal. Biochem. 102 (1980) 459–471CrossRefPubMedGoogle Scholar
  2. Bradley, T. B. Jr., Wohl, R. C. and Rieder, R. F. Hemoglobin Gun Hill: deletion of five amino acid residues and impaired heme-globin binding.Science 157 (1967) 1581–1583PubMedGoogle Scholar
  3. Briand, P., Cathelineau, L., Kamoun, P., Corgot, D. and Penninckx, M. Increase of ornithine transcarbamylase protein in sparse-fur mice with ornithine transcarbamylase deficiency.FEBS Lett. 130 (1981) 65–68CrossRefPubMedGoogle Scholar
  4. Briand, P., François, B., Rabier, D. and Cathelineau, L. Ornithine transcarbamylase deficiencies in human males. Kinetic and immunochemical classification.Biochim. Biophys. Acta 704 (1982) 100–106PubMedGoogle Scholar
  5. Burnette, W. M. ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulphate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A.Anal. Biochem. 112 (1981) 195–203CrossRefPubMedGoogle Scholar
  6. Conboy, J. G., Kalousek, F. and Rosenberg, L. E. In vitro synthesis of a putative precursor of mitochondrial ornithine transcarbamylase.Proc. Natl. Acad. Sci. USA 76 (1979) 5724–5727PubMedGoogle Scholar
  7. De Martinis, M. L., McIntyre, P. and Hoogenraad, N. J. A rapid, batch method for purifying ornithine transcarbamylase based on affinity chromatography using immobilized transition-state analog.Biochem. Int. 3 (1981) 371–378Google Scholar
  8. Haan, E. A., Danks, D. M., Hoogenraad, N. J., and Rogers, J. G. Hereditary hyperammonaemia syndrome—a six year experience.Aust. Pediatr. J. 15 (1979) 142–146Google Scholar
  9. Hoogenraad, N. J., Sutherland, T. M. and Howlett, G. J. Purification of ornithine transcarbamylase from rat liver by affinity chromatography with immobilized transition state analog.Anal. Biochem. 101 (1980) 97–102CrossRefPubMedGoogle Scholar
  10. Hsia, Y. E. Inherited hyperammonemia syndromes.Gastroenterology 67 (1974) 347–374PubMedGoogle Scholar
  11. Laemmli, U. K.. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227 (1970) 680–685CrossRefGoogle Scholar
  12. Mori, M., Morita, T., Ikeda, F., Amaya, Y., Tatibana, M. and Cohen, P. P. Synthesis, intracellular transport, and processing of the precursors for mitochondrial ornithine transcarbamylase and carbamoylphosphate synthetase I in isolated hepatocytes.Proc. Natl. Acad. Sci. USA 78 (1981) 6056–6060PubMedGoogle Scholar
  13. Mori, M., Muira, S., Tatibana, M., and Cohen, P. P. Processing of a putative precursor of rat liver ornithine transcarbamylase, a mitochondrial matrix enzyme.J. Biochem. (Tokyo) 88 (1980a) 1829–1836Google Scholar
  14. Mori, M., Muira, S., Tatibana, M. and Cohen, P. P. Characterization of the protease apparently involved in processing of pre-ornithine transcarbamylase of rat liver.Proc. Natl. Acad. Sci. USA 77 (1980b) 7044–7048PubMedGoogle Scholar
  15. Mori, M., Uchiyama, L., Muira, S., Tatibana, M. and Nagayamas, E. Ornithine carbamoyltransferase deficiency: coexistence of active and inactive forms of the enzyme.Clin. Chim. Acta 104 (1980c) 291–299PubMedGoogle Scholar
  16. Moritu, T., Muira, S. Mori, M. and Tatibana, M. Transport of the precursor for rat liver ornithine carbamyoltransferase into mitochondriain vitro.Eur. J. Biochem. 122 (1982) 501–509Google Scholar
  17. Renart, J., Reiser, J. and Stark, G. R. Specific association of Simian virus 40 with tumour antigen with Simian virus 40 chromatin.Proc. Natl. Acad. Sci. USA 76 (1979) 3116–3120PubMedGoogle Scholar
  18. Shih, V. E. Congenital hyperammonemia syndromes. In Ampola, M. G. (ed.).Clinics in Perinatology, Vol. 3, (1), Saunders, Philadephia, 1976, pp. 3–14Google Scholar
  19. Thaler, M. M., Hoogenraad, N. J. and Boswell, M. Reye's syndrome due to a novel protein-tolerant variant of ornithine-transcarbamylase.Lancet 2 (1974) 438–440PubMedGoogle Scholar

Copyright information

© SSIEM and MIP Press Limited 1983

Authors and Affiliations

  • N. Hoogenraad
    • 1
  • M. Luisa de Martinis
    • 1
  • D. M. Danks
    • 2
  1. 1.Department of BiochemistryLa Trobe UniversityBundooraAustralia
  2. 2.Birth Defects Research InstituteRoyal Children's HospitalParkvilleAustralia

Personalised recommendations