Genetic Resources and Crop Evolution

, Volume 42, Issue 1, pp 15–28 | Cite as

Evidence for two gene pools of the Lima bean,Phaseolus lunatus L., in the Americas

  • A. Gutiérrez Salgado
  • P. Gepts
  • D. G. Debouck


The lima bean,Phaseolus lunatus L., is a bean species with a broad distribution in the Americas that rivals that of common bean (P. vulgaris). In order to better understand the organization of genetic diversity and the pattern of domestication in lima bean, a review was conducted of the available information on the geographic distribution of wild and cultivated forms of this species. In addition, one-dimensional SDS polyacrylamide gel electrophoresis of seed proteins was also conducted on a sample of 84 wild, 6 weedy, and 426 cultivated forms. Results show that wild forms can be divided into two groups, one with smaller seeds and a very extensive distribution that includes Mexico, Central America, and the eastern slope of the Andes, and the other with a more circumscribed distribution on the western slope of the Andes in Ecuador and northern Peru. Electrophoretic analyses of seed proteins confirmed this subdivision and, additionally, showed that the large-seeded cultivars had been domesticated from the large-seeded wild lima beans in western South America. For the small-seeded lima bean cultivars, it was not possible to determine a domestication center as the most abundant protein pattern in the cultivars also had a widespread distribution in the small-seeded wild progenitor. Electrophoretic analyses showed, however, that domestication led to a reduction of genetic diversity in the small-seeded, Mesoamerican group, but not in the large-seeded group. The latter may be due to insufficient sampling of the larger-seeded, wild germplasm.

Key words

seed storage protein electrophoresis domestication crop evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, L. H., 1923. Various cultigens and transfers in nomenclature. Gentes Herbarum 1: 121–125.Google Scholar
  2. Bailey, L. H., 1940.Phaseolus lunatus and relatives. Gentes Herbarum 4: 336–341.Google Scholar
  3. Bannerot, H. & D. G. Debouck, 1992. L’importance de la double domestication pour l’amélioration du haricot commun (Phaseolus vulgaris). In: J. C. Mounolou (Ed.), Complexes d’espèces, flux de gènes et ressources génétiques des plantes. Colloqie international en hommage à Jean Pernès, pp. 495–506. Lavoisier-Technique et Documentation, Cachan Cedex, France.Google Scholar
  4. Baudet, J., 1977. Origine et classification des espèces cultivées du genrePhaseolus. Bull Soc. Roy. Bot. Belg. 110: 65–76.Google Scholar
  5. Bird, J. B. & J. Hyslop, 1985. The preceramic excavations at the Huaca Prieta, Chicama Valley, Peru. Anthrop. Papers Amer. Mus. Nat. Hist. 62: 1–294.Google Scholar
  6. Bird, R. M., 1984. South American maize in Central America. In: D. Stone (Ed.), Pre-Columbian plant migration, pp. 39–65. Harvard Univ. Press, Cambridge, MA.Google Scholar
  7. Bourdon, C., 1986. Polymorphisme enzymatique et organisation génétique des deux espèces cultivées tétraploïdes de cotonnier,Gossypium hirsutum etG. barbadense. Cot. Fibr. Trop. 41: 191–210.Google Scholar
  8. Brooks, R. H., L. Kaplan, H. C. Cutler & T. W. Whitaker, 1962. Plant material from a cave on the Río Zape, Durango, Mexico. Amer. Antiq. 27: 356–369.Google Scholar
  9. Brown, J. W. S., Y. Ma, F. A. Bliss & T. C. Hall, 1981. Genetic variation in the subunits of globulin-I storage protein of French bean. Theor. Appl. Genet. 59: 83–88.Google Scholar
  10. Càrdenas, M., 1969. Manual de plantas económicas de Bolivia. Icthus, Cochabamba, Bolivia.Google Scholar
  11. Carter, G. F., 1945. Plant geography and culture history in the American Southwest. Viking Fund Publ. Anthrop. 5: 1–140.Google Scholar
  12. Carter, G. F., 1946. Origins of American Indian agriculture. Amer. Anthropol. 48: 1–21.Google Scholar
  13. Carter, G. F., 1949. An early American description probably referring toPhaseolus lunatus. Chron. Bot. 12: 155–160.Google Scholar
  14. Crane, E. & P. Walker, 1984. Pollination directory for world crops. International Bee Research Association, London.Google Scholar
  15. Debouck, D. G. 1986.Phaseolus germplasm collection in Northwestern Argentina. International Board for Plant Genetic Resources, Rome, Italy. Mimeographed, 36 p.Google Scholar
  16. Debouck, D. G. 1987. Recolección de germoplasma dePhaseolus en el centro y centro-sur del Perú. International Board for Plant Genetic Resources, Rome, Italy. Mimeographed, 36 p.Google Scholar
  17. Debouck, D. G. 1988a.Phaseolus germplasm collection in Central and Eastern Guatemala. International Union for Conservation of Nature and Natural Resources, Gland, Switzerland. Mimeographed, 36p.Google Scholar
  18. Debouck, D. G. 1988b. Recolección de germoplasma dePhaseolus en Bolivia. Centro Internacional de Agricultura Tropical, Cali, Colombia. Mimeographed, 24 p.Google Scholar
  19. Debouck, D. G. 1989. Recolección de germoplasma dePhaseolus en el Ecuador. Centro Internacional de Agriculture Tropical, Cali, Colombia. Mimeographed, 22 p.Google Scholar
  20. Debouck, D. G. 1990. CollectingPhaseolus germplasm in Colombia. International Board for Plant Genetic Resources. Mimeographed, 90/85, 27 p.Google Scholar
  21. Debouck, D. G. 1991. Systematics and morphology. In: A. Van Schoonhoven & O. Voysest (Eds.), Common beans; research for crop improvement, pp. 55–118. CAB, Wallingford, Oxon, UK.Google Scholar
  22. Debouck, D. G. & J. Tohme, 1989. Implications for bean breeders of studies on the origins of common bean,Phaseolus vulgaris L. In: S. Beebe (Ed.), Current topics in breeding of common bean, pp. 3–42. Bean Program, Centro Internacional de Agricultura Tropical, Cali, Colombia.Google Scholar
  23. Debouck, D. G., J. H. Linen Jara, A. Campana Sierra & J. H. De la Cruz Rojas, 1987. Observations on the domestication ofPhaseolus lunatus L. FAO/IBPGR Plant Genet. Res. Newsl. 70: 26–32.Google Scholar
  24. Debouck, D. G., R. Castillo T. & J. M. Tohme, 1989a Observations of little-knownPhaseolus germplasm of Ecuador. Plant Genet. Res. Newslet. 80: 15–21.Google Scholar
  25. Debouck, D. G., A. Maquet & C. E. Posso, 1989b. Biochemical evidence for two different gene pools in lima beans. Ann. Rept. Bean Improv. Coop. 32: 58–59.Google Scholar
  26. de Candolle, A., 1882. L’origine des plantes cultivées. English translation: The origin of cultivated plants. Appleton, New York.Google Scholar
  27. Decker-Welters, D. S., 1990. Evidence for multiple domestications ofCucurbita pepo. In: D. M. Bates, R. W. Robinson & C. Jeffrey (Eds.), Biology and utilization of the Cucurbitaceae, pp. 96–101. Cornell Univ. Press, Ithaca, NY.Google Scholar
  28. Delgado Salinas, A., 1985. Systematics of the genusPhaseolus (Leguminosae) in North and Central America. Ph.D. thesis. University of Texas, Austin.Google Scholar
  29. Engel, F. A., 1966. Geografia humana prehistórica y agricultura precolombina de la quebrada de Chilca. 1. Universidad Agraria, Oficina de Promoción y Desarrollo, Departamento de Publicaciones, Lima, Peru.Google Scholar
  30. Engel, F. A., 1987. De las begonias al maíz, vida y productión en et Perú antiguo. Ediagraria, Universidad Nacional Agraria La Molina, Lima, Peru.Google Scholar
  31. Erickson, H. T., 1982. Lima bean legacy. HortScience 17: 702.Google Scholar
  32. Eshbaugh, W. H., S. I. Guttman & M. J. McLeod, 1983. The origin and evolution of domesticatedCapsicum species. J. Ethnobiol. 3: 49–54.Google Scholar
  33. Esquivel, M., L. Castñeiras & K. Hammer, 1990. Origin, classification, variation and distribution of lima bean (Phaseolus lunatus L.) in the light of Cuban material. Euphytica 49: 89–97.CrossRefGoogle Scholar
  34. Estrella, E., 1988. El pan de América. Abya-Yala, Quito, Ecuador.Google Scholar
  35. Fawcett, W. & A. B. Rendle, 1920. Flora of Jamaica. Flora Jamaica 4: 1–369.Google Scholar
  36. Ford, R. I., 1985. Patterns of prehistoric food production in North America. In: R. I. Ford (Ed.), Prehistoric food production in North America, pp. 341–364. Museum of Anthropology, Univ. of Michigan, Ann Arbor, MI.Google Scholar
  37. Gepts, P., 1988a. Phascolin as an evolutionary marker. In: P. Gepts (Ed.), Genetic resources ofPhaseolus beans, pp. 215–241. Kluwer, Dordrecht, the Netherlands.Google Scholar
  38. Gepts, P., 1988b. A Middle American and Andean gene pool. In: P. Gepts (Ed.), Genetic resources ofPhaseolus beans, pp. 375–390. Kluwer, Dordrecht, the Netherlands.Google Scholar
  39. Gepts, P., 1990. Genetic diversity of seed storage proteins in plants. In: A. H. D. Brown, M. T. Clegg, A. L. Kahler & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources, pp. 64–82. Sinauer, Sunderland, MA.Google Scholar
  40. Gepts, P. & F. A. Bliss, 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J. Hered. 76: 447–450.Google Scholar
  41. Gepts, P. & F. A. Bliss, 1986. Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ. Bot. 40: 469–478.Google Scholar
  42. Gepts, P. & D. G. Debouck, 1991. Origin, domestication, and evolution of the common bean,Phaseolus vulgaris. In: O. Voysest & A. Van Schoonhoven (Eds.), Common beans: research for crop improvement, pp. 7–53. CAB, Oxon, UK.Google Scholar
  43. Gepts, P., T. C. Osborn, K. Rashka & F. A. Bliss, 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ. Bot. 40: 451–468.Google Scholar
  44. Goodman, M. M., 1988. The history and evolution of maize. CRC Crit. Rev. Plant Sci. 7: 197–220.Google Scholar
  45. Harlan, J. R., 1971. Agricultural orgins: centers and non-centers. Science 174: 468–474.Google Scholar
  46. Heiser, C. B., 1965. Cultivated plants and cultural diffusion in nuclear America. Amer. Anthropol. 67: 930–949.Google Scholar
  47. Hernández Xolocotzi, E., 1959. Los recursos naturales del Sureste y su aprovechamiento. Edic. Inst. Mex. Rec. Nat. Renov. México DF 2: 1–354.Google Scholar
  48. Hussain, A., W. Bushuk, H. Ramírez & W. Roca, 1988. A practical guide for electrophoretic analysis of isoenzymes and proteins in cassava, field beans and forage legumes. Centro Internacional de Agricultura Tropical, Working Document No. 40, Cali, Colombia.Google Scholar
  49. Kaplan, L., 1956. The cultivated beans of the prehistoric Southwest. Ann. Miss. Bot. Gard. 43: 189–227.Google Scholar
  50. Kaplan, L., 1965. Archaeology and domestication in AmericanPhaseolus. Econ. Bot. 19: 358–368.Google Scholar
  51. Kaplan, L., 1967. ArcheologicalPhaseolus from Tehuacán. In: D. E. Beyers (Ed.), The prehistory of the Tehuacán Valley, pp. 201–211. University of Texas, Austin, TX.Google Scholar
  52. Kaplan, L. & L. N. Kaplan, 1988.Phaseolus in archaeology. In: P. Gepts (Ed.), Genetic resources ofPhaseolus beans, pp. 125–142. Kluwer, Dordrecht, the Netherlands.Google Scholar
  53. Kaplan, L. & R. S. MacNeish, 1960. Prehistoric bean remains from caves in the Ocampo region of Tamaulipas, Mexico. Bot. Mus. Leafl. Harvard Univ. 19: 33–56.Google Scholar
  54. Kaplan, L., T. F. Lynch & C. E. Smith Jr., 1973. Early cultivated beans (Phaseolus vulgaris) from an intermontane Peruvian valley. Science 179: 76–77.Google Scholar
  55. Khairallah, M. M., M. W. Adams & B. B. Sears, 1990. Mitochondrial DNA polymorphisms of Malawian bean lines: further evidence for two major gene pools. Theor. Appl. Genet. 80: 753–761.CrossRefGoogle Scholar
  56. Khairallah, M. M., B. B. Sears & M. W. Adams, 1992. Mitochondrial restriction fragment polymorphisms in wildPhaseolus vulgaris-insights in the domestication of common bean. Theor. Appl. Genet. 84: 915–922.CrossRefGoogle Scholar
  57. Koenig, R. & P. Gepts, 1989. Allozyme diversity in wildPhaseolus vulgaris: further evidence for two major centers of diversity. Theor. Appl. Genet. 78: 809–817.CrossRefGoogle Scholar
  58. Koenig, R., S. P. Singh & P. Gepts, 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot. 44: 50–60.Google Scholar
  59. Koinange, E. M. K. & P. Gepts, 1992. Hybrid weakness in wildPhaseolus vulgaris L. J. Hered. 83: 135–139.Google Scholar
  60. Ladizinsky, G., 1985. Founder effect in crop-plant evolution. Econ. Bot. 39: 191–198.Google Scholar
  61. Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.CrossRefPubMedGoogle Scholar
  62. Lewis, G. P., 1987. Legumes of Bahia. Royal Botanic Gardens, Kew, UK.Google Scholar
  63. Linnaeus, C., 1753. Species plantarum., Stockholm, Sweden.Google Scholar
  64. Lioi, L., M. Esquivel, L. Castiñeiras & K. Hammer, 1991. Lima bean (Phaseolus lunatus L.) landraces from Cuba: electrophoretic analysis of seed storage proteins. Biol. Zentbl. 110: 76–79.Google Scholar
  65. Lundell, C. L., 1934. Preliminary sketch of the phytogeography of the Yucatan peninsula. Carnegie Inst. Washington Publ. 436: 257–321.Google Scholar
  66. Lynch, T. F., R. Gillespie, J. A. J. Gowlett & R. E. M. Hedges, 1985. Chronology of Guitarrero Cave, Peru. Science 229: 864–867.Google Scholar
  67. Mackie, 1943. Origin, dispersal and variability of the lima bean,Phaseolus lunatus. Hilgardia 15: 1–29.Google Scholar
  68. Manen, J. F. & E. Otoul, 1981. Etudes électrophorétiques et détermination des fractions protéiques principales chez quelques cultivars élites dePhaseolus lunatus L. et dePhaseolus vulgaris L. Bull. Rech. Agron. Gembloux 16: 309–326.Google Scholar
  69. Mangelsdorf, P. C., R. S. McNeish & G. R. Willey, 1965. Origins of Middle American agriculture. In: Natural environment and early cultures, pp. 427–445. Univ. of Texas Press, Austin, Texas.Google Scholar
  70. Maquet, A., 1991. Lima bean (Phaseolus lunatus L.) catalogue. Centro International de Agricultura Tropical, Cali, Colombia. Working document No. 84.Google Scholar
  71. Maquet, A., A. Gutiérrez & D. G. Debouck, 1990. Further biochemical evidence for the existence of two gene pools in lima beans. Ann. Rept. Bean Improv. Coop. 33: 128–129.Google Scholar
  72. Maréchal, R., J.-M., Mascherpa & F. Stainier, 1978. Etude taxonomique d’un groupe complexe d’espèces des genresPhaseolus etVigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28: 1–273.Google Scholar
  73. Martínez, M., 1959. Plantas útiles de la flora mexicana. Andrés Botas, México, DF.Google Scholar
  74. McBryde, F. W., 1947. Cultural and historical geography of southwest Guatemala. Smithsonian Inst. Publ. 4: 1–184.Google Scholar
  75. Miranda, F., 1952. La vegetación de Chiapas. Ediciones del Gobierno del Estado, Tuxtla Gutiérrez, Chiapas, Mexico.Google Scholar
  76. Nee, M., 1990. The domestication of Cucurbita (Cucurbitaceae). Econ Bot 44 (3S): 56–68.Google Scholar
  77. Parodi, L. R., 1932. Plantas suramericanas cultivadas en la provincia de Jujuy. Gaea 4: 19–28.Google Scholar
  78. Patño, V. M., 1964. Plantas cultivadas y animales domésticos en América equinoccial. Imprenta Departamental, Cali, Colombia.Google Scholar
  79. Pearsall, D. M., 1978. Paleoethnobotany in western South America: progress and problems. In: pp. 389–416. Museum of Anthropology, University of Michigan, Ann. Arbor, MI.Google Scholar
  80. Perkins, J., 1907. The Leguminosac of Puerto Rico. Contrib. US Nat. Herb. 10: 133–220.Google Scholar
  81. Pickersgill, B., 1984. Migrations of Chili peppers,Capsicum spp., in the Americas. In: D. Stone (Ed.), Pre-Columbian plant migration, pp. 105–123. Harvard Univ. Press, Cambridge, MA.Google Scholar
  82. Pickersgill, B. & C. B. Heiser, 1977. Origins and distribution of plants domesticated in the New World tropics. In: C. A. Reed (Ed.), Origins of agriculture, pp. 803–835. Mouton, The Hague.Google Scholar
  83. Piper, C. V., 1926. Studies in American Phaseolinae. Contrib. US Nat. Herb. 22: 663–701.Google Scholar
  84. Pittier, H., 1926. Manual de las plantas usuales de Venezuela. Litografía del Comercio, Caracas.Google Scholar
  85. Quitter, J., E. B. Ojeda, D. M. Pearsall, D. H. Sandweiss, J. G. Jones & E. S. Wing, 1991. Subsistence economy of El Paraíso, an early Peruvian site. Science 251: 277–283.Google Scholar
  86. Sauget, J. S. & E. E. Liogier, 1974. Flora de Cuba. Koeltz, Koenigstein, Germany.Google Scholar
  87. Schinkel, C. & P. Gepts, 1988. Phaseolin diversity in the tepary bean,Phaseolus acutifolius A. Gray. Plant Breed. 101: 292–301.Google Scholar
  88. Schmit, V. & D. G. Debouck, 1991. Observations on the origin ofPhaseolus polyanthus Greenman. Econ. Bot. 45: 345–364.Google Scholar
  89. Singh, S. P., R. Nodari & P. Gepts, 1991. Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci. 31: 19–23.Google Scholar
  90. Sprecher, S. L., 1988. Allozyme differentiation between gene pools in common bean (Phaseolus vulgaris L.), with special reference to Malawian germplasm. Ph.D. thesis. Michigan State University, East Lansing, MI.Google Scholar
  91. Standley, P. C. & S. J. Record, 1936. The forest and flora of British Honduras. Field Mus. Nat. Hist. Bot. Ser. 12: 1–300.Google Scholar
  92. Standley, P. C. & J. A. Steyermark, 1946. Flora of Guatemala-Part V. Fieldiana, Botany 24: 1–502.Google Scholar
  93. Turner II, B. L. & C. H. Miksicek, 1984. Economic plant species associated with prehistoric agriculture in the Maya lowlands. Econ. Bot. 38: 179–193.Google Scholar
  94. van Eseltine, G. P., 1931. Variation in the lima bean,Phaseolus lunatus L., as illustrated by its synonymy. NY State Agric Exp Sta Techn Bull 182: 3–24.Google Scholar
  95. Vavilov, N. I., 1949. Phytogeographic basis of plant breeding. Chron. Bot. 13: 13–54.Google Scholar
  96. Westphal, E., 1974. Pulses in Ethiopia, their taxonomy and agricultural significance. Pudoc, Wageningen, the Netherlands.Google Scholar
  97. Wilson, H. D. & C. B. Heiser, 1979. The origin and evolutionary relationships of ‘huauzontle’ (Chenopodium nuttaliae Safford), domesticated chenopod of Mexico. Amer. J. Bot. 66: 198–206.Google Scholar
  98. Yacovleff, E. & F. L. Herrera, 1934. El mundo vegetal de los antiguos peruanos. Rev. Mus. Nac. Lima 3: 241–322.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. Gutiérrez Salgado
    • 1
  • P. Gepts
    • 2
  • D. G. Debouck
    • 3
  1. 1.Departamento de BiologíaPontificia Universidad JaverianaBogotá, D.E.Colombia
  2. 2.Department of Agronomy and Range ScienceUniversity of CaliforniaDavis
  3. 3.IBPGR Group for the Americas, International Board for Plant Genetic ResourcesCaliColombia

Personalised recommendations