Periodica Mathematica Hungarica

, Volume 22, Issue 1, pp 27–60 | Cite as

Some saturation theorems for classical orthogonal expansions I.

  • M. Horváth
Article

Keywords

Orthogonal Expansion Saturation Theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.Alexits, Sur l'ordre de grandeur de l'approximation d'une fonction périodique par les sommes de Fejér,Acta Math. Acad. Sci. Hungar. 3 (1952), 29–40.MR 14, 370MATHMathSciNetGoogle Scholar
  2. [2]
    A.Bogmér, Generalization of a theorem of G. Alexits,Ann. Univ. Sci. Budapest. Eötvös, Setcio Math. 31 (1988), 223–228.MATHGoogle Scholar
  3. [3]
    P. L.Butzer and H.Berens,Semi-groups of operators and approximation, Springer, Berlin, 1967.MR 37: 5588Google Scholar
  4. [4]
    I. Joó, On the divergence of eigenfunction expansions,Ann. Univ. Sci. Budapest, Eötvös, Sectio Math. (To appear)Google Scholar
  5. [5]
    I.Joó, On the order of approximation by Fejér means of Hermite—Fourier and Laguerre—Fourier series,Acta Math. Hungar. 51 (1988), 365–370.MATHMathSciNetGoogle Scholar
  6. [6]
    I. Joó, Saturation theorems for Hermite—Fourier series,Acta Math. Hungar. (To appear)Google Scholar
  7. [7]
    B.Muckenhoupt, Mean convergence of Jacobi series,Proc. Amer. Math. Soc. 23 (1969), 306–310,MR 40: 628MATHMathSciNetGoogle Scholar
  8. [8]
    B.Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions,Trans. Amer. Math. Soc. 139 (1969), 231–242.MR 40: 3158MATHMathSciNetGoogle Scholar
  9. [9]
    L. Gy. Pál, Ortogonális függvénysorok (Orthogonal function series),University of Budapest, 1979. (Lecture note) (In Hungarian)Google Scholar
  10. [10]
    H.Pollard, The mean convergence of orthogonal series, III,Duke Math. J. 16 (1949), 189–191.MR 10, 450CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    F.Schipp and N. X.Ky, On strong summability of polynomial expansions,Ann. of Math. 12 (1986), 115–127.MR 87i: 40 009Google Scholar
  12. [12]
    E. M.Stein and B.Muckenhoupt, Classical expansions and their relation to conjugate harmonic functions,Trans Amer. Math Soc. 118 (1965), 17–92.MR 33: 7779MathSciNetGoogle Scholar
  13. [13]
    G.Szegő,Orthogonal polynomials, Amer. Math. Soc., Providence (R. I.), 1959,MR 21, 5029Google Scholar
  14. [14]
    W.Trebels,Multipliers for (C α,)-bounded Fourier expansions in Banach speces and Approximation Theory, Springer, Berlin, 1973.MR 58: 23 307Google Scholar
  15. [15]
    G. M.Wing, The mean convergence of orthogonal series,Amer. J. Math. 72 (1950), 792–808.MR 12, 329MATHMathSciNetGoogle Scholar
  16. [16]
    A.Zygmund,Trigonometric series, Cambridge Univ. Press, New York, 1959.MR 21, 6498Google Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • M. Horváth
    • 1
  1. 1.Department of AnalysisEötvös Loránd UniversityBudapestHungary

Personalised recommendations