Advertisement

Mathematical Notes

, Volume 60, Issue 1, pp 89–93 | Cite as

On the theorem on asymptotic equidistribution of the convolution powers of symmetric measures on a unimodular group

  • M. G. Shur
Article

Abstract

The theorem on the asymptotic equidistribution of the convolution powers of a symmetric probability measure given on a unimodular group [1] deals with a measure whose convolution powers, starting from one of them, load an arbitrary prescribed nonempty subset of the group. In the present note, we indicate the modifications that arise under the replacement of the above condition by the requirement that the smallest closed subgroup (of the group considered) generated by the support of this measure coincide with the group itself.

Key words

unimodular locally compact group asymptotic equidistribution symmetric measure convolution power 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Shur, “Asymptotic equidistribution of the convolution powers of symmetric probability measures on unimodular groups,”Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.],27, No. 1, 92–93 (1992).MathSciNetGoogle Scholar
  2. 2.
    A. Avez, “Limite de quotients pour les marches aléatoires sur les groupes,”C. R. Acad. Sci. Paris.,276, No. 4, 317–320 (1973).MATHMathSciNetGoogle Scholar
  3. 3.
    E. Hewitt and K. A. Ross,Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin-Heidelberg-New York (1973).Google Scholar
  4. 4.
    M. G. Shur, “On the limit theorems for ratios generated by random walks on homogeneous spaces. 1,”Teor. Veroyatnost. i Primenen. [Theory Probab. Appl.],33, No. 4, 706–719 (1988).MATHMathSciNetGoogle Scholar
  5. 5.
    E. Nummelin,General Irreducible Markov Chains and Nonnegative Operators, Cambridge Univ. Press, Cambridge-London-New York (1984).Google Scholar
  6. 6.
    D. Revuz,Markov Chains, North-Holland, Amsterdam, N.Y. (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • M. G. Shur
    • 1
  1. 1.Moscow Institute of Electronics and MathematicsTechnical UniversityUSSR

Personalised recommendations