Mathematical Notes

, Volume 63, Issue 2, pp 225–232 | Cite as

Classification up to cobordism of manifolds with simple action of ℤ/p

  • T. E. Panov
Article
  • 32 Downloads

Abstract

We deal with quasi-complex manifolds with an action of the group ℤ/p such that the set of fixed points of this action has a trivial normal bundle. The set of cobordism classes of these manifolds is described in terms of the coefficients of the formal group of geometric cobordisms and in terms of characteristic numbers. We also establish the relationship between this work and relevant papers containing a solution of this problem in some particular cases.

Key words

Cobordism classes ℤ/p-actions the formal group of geometric cobordisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Conner and E. Floyd,Differentiable Periodic Maps, Springer-Verlag, Berlin-Göttingen-Heidelberg (1964).Google Scholar
  2. 2.
    S. P. Novikov, “Methods of algebraic topology from the viewpoint of the cobordism theory,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],31, 855–951 (1967).MATHMathSciNetGoogle Scholar
  3. 3.
    V. M. Bukhshtaber and S. P. Novikov, “Formal groups, power systems, and the Adams operators,”Mat. Sb. [Math. USSR-Sb.],84(126), 81–118 (1971).MathSciNetGoogle Scholar
  4. 4.
    G. G. Kasparov, “Invariants of classical lens spaces in the cobordism theory,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],33, 735–747 (1969).MATHMathSciNetGoogle Scholar
  5. 5.
    S. P. Novikov, “The Adams operators and fixed points,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],32, 1245–1263 (1968).MATHMathSciNetGoogle Scholar
  6. 6.
    V. M. Bukhshtaber, “The Chern-Dold character in the cobordism theory. I,”Mat. Sb. [Math. USSR-Sb.],83(125), 575–595 (1970).MATHMathSciNetGoogle Scholar
  7. 7.
    R. Stong,Notes on Cobordism Theory, Princeton Univ. Press and the Univ. of Tokyo Press, Princeton, N.J. (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • T. E. Panov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations