Advertisement

Mathematical Notes

, Volume 63, Issue 2, pp 161–171 | Cite as

Dynamics of elementary maps of dendrites

  • M. I. Voinova
  • L. S. Efremova
Article

Abstract

The notion of elementary map of a dendrite into itself is introduced. Arithmetical relations between the periods of periodic points are given; the structure ofω-limit sets, sets of periodic and nonwandering points is described; the topological entropy of elementary maps is shown to be equal to 0. Examples are given illustrating the differences in the entropic properties of continuous maps of dendrites with a countable set of branch points and continuous maps of their retracts which are finite trees.

Key words

dendrites periods dynamics of maps topological entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Sharkovskii, “Coexistence of cycles of a continuous map of the line into itself,”Ukrain. Mat. Zh. [Ukrainian Math. J.],16, No. 1, 61–71 (1964).MATHMathSciNetGoogle Scholar
  2. 2.
    M. Misiurewicz, “Horseshoes for mappings of the interval,”Bull. Acad. Polon. Sci. Ser. Sci. Math.,27, No. 2, 167–169 (1979).MATHMathSciNetGoogle Scholar
  3. 3.
    A. M. Blokh, “On “spectral decomposition” for piecewise monotone maps of the segment,”Uspekhi Mat. Nauk [Russian Math. Surveys],37, No. 3, 175–176 (1982).MATHMathSciNetGoogle Scholar
  4. 4.
    L. S. Efremova, “Periodic orbits and the degree of a continuous map of the circle,” in:Differential and Integral Equations, [in Russian], Gorky State Univ., Gorky (1978), pp. 109–115.Google Scholar
  5. 5.
    L. S. Efremova and R. G. Rakhmankulov, “Coexistence theorems for periodic orbits of endomorphisms of the circle,” in:Differential and Integral Equations, No. 4 [in Russian], Gorky State Univ., Gorki (1980), pp. 116–118.Google Scholar
  6. 6.
    L. S. Efremova, “Periodic points of a continuous mapping of the circle,” in:The 9th International Conference on Nonlinear Oscillations Kiev, 30.08.81–06.09.81 [in Russian], Vol. 2, Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Kiev (1984), pp. 124–126.Google Scholar
  7. 7.
    M. I. Malkin, “Periodic orbits, entropy, and sets of rotation of continuous mappings of the circle,”Ukrain. Mat. Zh. [Ukrainian Math. J.],35, No. 3, 327–332 (1983).MATHMathSciNetGoogle Scholar
  8. 8.
    L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, “Periodic points and topological entropy of one-dimensional maps,”Lecture Notes in Math.,819, 18–34 (1980).MathSciNetGoogle Scholar
  9. 9.
    C. Bernhardt, “Periodic orbits of continuous mappings of the circle without fixed points,”Ergodic Theory Dynam. Systems,1, No. 4, 413–417 (1981).MATHMathSciNetGoogle Scholar
  10. 10.
    L. Alseda and J. Llibre, “A note on the set of periods for continuous maps of the circle which have degree one,”Proc. Amer. Math. Soc.,93, No. 1, 133–138 (1985).MathSciNetGoogle Scholar
  11. 11.
    St. Baldwin, “An extension of Šarkovskii's theorem to then-od,”Ergodic Theory Dynam. Systems,11, No. 2, 249–271 (1991).MATHMathSciNetGoogle Scholar
  12. 12.
    St. Baldwin, “Some limitations toward extending Šarkovskii's theorem to connected linearly ordered spaces,”Houston J. Math.,17, No. 1, 39–53 (1991).MATHMathSciNetGoogle Scholar
  13. 13.
    L. Alseda, J. Llibre, and M. Misiurewicz, “Periodic orbits of maps ofY, ”Trans. Amer. Math. Soc.,313, No. 2, 475–538 (1989).MathSciNetGoogle Scholar
  14. 14.
    J. Llibre and M. Misiurewicz, “Horseshoes, entropy and periods for graph maps,”Topology,32, 649–664 (1993).CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. M. Blokh, “Periods implying almost all periods, trees with snowflakes, and zero entropy maps,”Nonlinearity,5, 1375–1382 (1992).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    K. Kuratowski,Topology, Vol. 2, Academic Press, New York-London (1968).Google Scholar
  17. 17.
    W. L. Ayres, “Some generalization of the Scherrer fixed point theorem,”Fund. Math.,16, 332–336 (1930).MATHGoogle Scholar
  18. 18.
    A. N. Sharkovskii, “On attracting and attracted sets,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],160, No. 5, 1036–1038 (1965).MATHMathSciNetGoogle Scholar
  19. 19.
    K. Kuratowski,Topology, Vol. 1, Academic Press, New York-London (1968).Google Scholar
  20. 20.
    E. I. Dinaburg, “Connection between various entropic characteristics of dynamic systems,”Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.],35, No. 2, 324–366 (1971).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. I. Voinova
    • 1
  • L. S. Efremova
    • 1
  1. 1.N. I. Lobachevsky Nizhnii Novgorod State UniversityUSSR

Personalised recommendations