Mathematical Notes

, Volume 59, Issue 4, pp 400–404 | Cite as

On the hyperbolicity criterion for noncompact Riemannian manifolds of special type

  • A. G. Losev
Article

Abstract

In this paper we study the behavior of bounded harmonic functions on complete Riemannian manifolds (of a certain special type) depending on the geometry of the manifold.

Keywords

Manifold Riemannian Manifold Harmonic Function Complete Riemannian Manifold Noncompact Riemannian Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature,”J. Differential Geom.,18, 701–722 (1983).MATHMathSciNetGoogle Scholar
  2. 2.
    D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds,”J. Differential Geom.,18, 722–732 (1983).MathSciNetGoogle Scholar
  3. 3.
    S. T. Yau, “Nonlinear analysis in geometry,”L'Enseignement Mathématique,33, 109–158 (1987).MATHGoogle Scholar
  4. 4.
    A. G. Losev, “Some Liouville-like theorems on Riemannian manifolds of special type,”Izv. Vyssh. Uchebn. Zaved. Mat., [Soviet Math. J. (Iz. VUZ)], No. 12, 15–24 (1991).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. G. Losev
    • 1
  1. 1.Volgograd State UniversityUSSR

Personalised recommendations