Advertisement

Mathematical Notes

, Volume 59, Issue 3, pp 324–326 | Cite as

On a topological generalization of the Tverberg theorem

  • A. Yu. Volovikov
Brief Communications

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Bajmóczy and I. Bárány,Acta Math. Hung.,34, 347–350 (1979).Google Scholar
  2. 2.
    I. Bárány, S. B. Shlosman, and A. Szücs,J. London Math. Soc.,23, 158–164 (1981).MathSciNetGoogle Scholar
  3. 3.
    H. Tverberg,J. London Math. Soc.,41, 123–128 (1966).MATHMathSciNetGoogle Scholar
  4. 4.
    W. Y. Hsiang,Cohomology Theory of Topological Transformation Groups, Springer-Verlag, Berlin-Heidelberg-New York (1975).Google Scholar
  5. 5.
    A. Yu. Volovikov,Mat. Sb. [Math. USSR-Sb.],183, No. 7, 115–144 (1992).MATHGoogle Scholar
  6. 6.
    A. Yu. Volovikov,Mat. Sb. [Math. USSR-Sb.],110, No. 1, 128–134 (1979).MATHMathSciNetGoogle Scholar
  7. 7.
    J. Zaworowski,Bull. Polish. Acad. Sci. Math.,4, 187–192 (1956).Google Scholar
  8. 8.
    G. S. Scordev,Serdica,1, 183–198 (1975).MathSciNetGoogle Scholar
  9. 9.
    K. Geba and L. Gorniewicz,Bull. Polish. Acad. Sci. Math.,34, No. 5–6, 315–322 (1986).MathSciNetGoogle Scholar
  10. 10.
    M. Izydorek,J. Math. Anal. Appl.,137, 349–353 (1989).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    A. Yu. Volovikov,Uspekhi Mat. Nauk [Russian Math. Surveys],49, No. 4, 159–160 (1994).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Yu. Volovikov
    • 1
  1. 1.Moscow Institute of Radio Engineering, Electronics, and AutomationUSSR

Personalised recommendations