Mathematical Notes

, Volume 59, Issue 6, pp 581–585 | Cite as

Prem-mappings, triple self-intersection points of oriented surfaces, and the Rokhlin signature theorem

  • P. M. Akhmet'ev


We find a connection between the Rokhlin theorem on the signature of a four-dimensional manifold and the notion of a prem-mapping that arises from the theory of embeddings of smooth manifolds.


Manifold Smooth Manifold Oriented Surface Signature Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Szucs, “On the cobordism groups of immersions and embeddings,”Math. Proc. Cambridge Philos. Soc.,109, 343–349 (1991).MathSciNetGoogle Scholar
  2. 2.
    A. Szucs, “Cobordism groups of immersions of oriented manifolds,”Acta. Math. Hungar.,64, No. 2, 191–230 (1994).MathSciNetGoogle Scholar
  3. 3.
    B. Morin and J. P. Petit, “Problématique du retournement de la sphère,”C. R. Acad. Sci. Paris,287, 767–770 (1978).MathSciNetGoogle Scholar
  4. 4.
    P. M. Akhmet'ev, “Smooth embeddings of low-dimensional manifolds,”Mat. Sb. [Math. USSR-Sb],185, No. 10, 3–26 (1994).MATHGoogle Scholar
  5. 5.
    T. Banchoff, “Triple points and singularities of projections of immersed surfaces,”Proc. Amer. Math. Soc.,46, 402–406 (1974).MATHMathSciNetGoogle Scholar
  6. 6.
    V. A. Rokhlin, “A proof of the Gudkov conjecture,”Funktsional. Anal. i Prilozhen. [Functional Anal. Appl.],6, No. 2, 62–64 (1972).MATHGoogle Scholar
  7. 7.
    L. Guillou and A. Marin, editors,A la recherche de la Topologie perdue, Progress in Mathematics, Vol. 62, Birkhäuser, Basel (1986).Google Scholar
  8. 8.
    R. Kirby,The Topology of 4-Manifolds, Lecture Notes in Math., Vol. 1374, Springer-Verlag, New York-Berlin (1989).Google Scholar
  9. 9.
    R. Mandelbaum,Four-Dimensional Topology, University of Rochester (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • P. M. Akhmet'ev
    • 1
  1. 1.Institute of Earth Magnetism and Wave PropagationRussian Academy of SciencesUSSR

Personalised recommendations