Annals of Surgical Oncology

, Volume 3, Issue 6, pp 515–520 | Cite as

pS2 expression induced by American ginseng in MCF-7 breast cancer cells

  • Rosemary B. Duda
  • Bret Taback
  • Bruce Kessel
  • Danielle D. Dooley
  • Hua Yang
  • Jane Marchiori
  • Brant M. Slomovic
  • Juan G. Alvarez
Original Articles


Background: Alternative medicines are frequently used by patients with breast cancer for general health benefits. American ginseng, an herbal remedy, purportedly alleviates treatment-induced postmenopausal symptoms.

Methods: Estrogenic potential of American ginseng root extract to induce the expression of pS2, an estrogen-regulated gene, was evaluated in breast cancer cell lines MCF-7, T-47D, and BT-20 by Northern and Western blot analysis. Competitive studies were performed with ginseng in combination with tamoxifen. Cell proliferation assays were performed using the tetrazolium dye procedure and direct cell count.

Results: Ginseng and estradiol induce the expression of pS2 RNA and protein in MCF-7 cells, whereas tamoxifen suppresses expression. Neither ginseng nor estradiol induced increased pS2 expression in T-47D or BT-20 cell lines. Although estradiol exhibited a proliferative effect and tamoxifen had an inhibitory effect, ginseng demonstrated no significant effect on cell proliferation.

Conclusions: The results of this study suggest that ginseng may exhibit estrogenlike effects on estrogen receptor-positive breast cancer cells by inducing pS2 expression and that the effect of ginseng may be mediated in part through the estrogen receptor. Because ginseng does not exhibit a proliferative effect, it may play a protective role against breast cancer rather than serve as a mitogen.

Key Words

Phytoestrogens pS2 Alternative medicine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhou DH. Preventive geriatrics: an overview from traditional Chinese medicine.Am J Chin Med 1982;10:32–9.PubMedGoogle Scholar
  2. 2.
    Hu SY. A contribution to our knowledge of ginseng.Am J Chin Med 1977;5:1–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Li CP, Li RC. An introductory note to ginseng.Am J Clin Med 1973;1:249–61.Google Scholar
  4. 4.
    Kessel B, Duda RB, Prouty J, et al. The use of antioxidants and unconventional alternatives to estrogen in postmenopausal women with and without breast cancer [Abstract S-8]. Presented at The North American Menopause Society 5th Annual Meeting, Washington, DC, September 22–24, 1994.Google Scholar
  5. 5.
    Eisenberg DM, Kessler RC, Foster C, Norlock FE, Calkins DR, Delbanco TL. Unconventional medicine in the United States.N Engl J Med 1993;328:246–52.CrossRefPubMedGoogle Scholar
  6. 6.
    Hu SY. A contribution to our knowledge of ginseng.Am J Chin Med 1977;5:1–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Fugimoto Y, Satoh M, Takeuchi N, Kirisawa M. Cytotoxic acetylenes from Panax quinquefolium.Chem Pharm Bull 1991;39:521–3.Google Scholar
  8. 8.
    Hopkins MP, Androff L, Benninghoff AS. Ginseng face cream and unexplained vaginal bleeding.Am J Obstet Gynecol 1988;159:1121–2.PubMedGoogle Scholar
  9. 9.
    Arkko PJ, Arkko BL, Kari-Koskinen O, Taskinen PJ. A survey of unproven cancer remedies and their uses in an outpatient clinic for cancer therapy in Finland.Soc Sci Med 1980;14A:511–4.Google Scholar
  10. 10.
    Downer SM, Cody MM, McCluskey P, et al. Pursuit and practice of complementary therapies by cancer patients receiving conventional treatment.Br Med J 1994;309:86–9.Google Scholar
  11. 11.
    Brown AMC, Jeltsch JM, Roberts M, Chambon P. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line.Proc Natl Acad Sci U S A 1984;81:6344–8.PubMedGoogle Scholar
  12. 12.
    Nunez AM, Jakowlev S, Briand JP, et al. Characterization of the estrogen-induced pS2 protein secreted by the human breast cancer cell line MCF-7.Endocrinology 1987;121:1759–65.PubMedGoogle Scholar
  13. 13.
    Westley B, May FEB, Brown AMC, et al. Effects of antiestrogens on the estrogen-regulated pS2 RNA and the 52- and 160-kilodalton proteins in MCF7 cells and two tamoxifen-resistant sublines.J Biol Chem 1984;259:10030–5.PubMedGoogle Scholar
  14. 14.
    Sathyamoorthy N, Wang TTY, Phang JM. Stimulation of pS2 expression by diet-derived compounds.Cancer Res 1994;54:957–61.PubMedGoogle Scholar
  15. 15.
    Alvarez JG, Touchstone JC, Storey BT, Grob RL. Determination of sphingolipid sphingoid bases by HPTLC-fluorescence spectrodensitometry.J Liquid Chromatogr 1990;12:3115–9.Google Scholar
  16. 16.
    Alvarez JG, Touchstone JC. Separation of acidic and neutral lipids by aminopropyl-bonded silica gel column chromatography.J Chromatogr 1992;577:142–5.PubMedGoogle Scholar
  17. 17.
    Horwitz KB, Zava DT, Thilagar AK, Jensen EM, McGuire WL. Steroid receptor analyses of nine human breast cancer cell lines.Cancer Res 1978;38:2434–7.PubMedGoogle Scholar
  18. 18.
    Horwitz KB, McGuire WL. Estrogen control of progesterone receptor in human breast cancer.J Biol Chem 1978;253:2223–8.PubMedGoogle Scholar
  19. 19.
    Chirgwin JM, Przbyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 1979;18:5294–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Ausubel FM, Brent R, Kingston RE, et al.Current protocols in molecular biology. New York: John Wiley & Sons, 1989.Google Scholar
  21. 21.
    Sambrook J, Fritsch EF, Maiatis T.Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  22. 22.
    Camby I, Kiss R. In vitro estradol-sensitivity characterization of the MCF-7, ZR-75, MDA-MB-231 and T-47D human breast neoplastic cell lines.Anticancer Res 1993;13:2355–60.PubMedGoogle Scholar
  23. 23.
    Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability.J Immunol Methods 1986;89:271–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Carmichael J, De Graff WG, Gazdar AF, et al. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing.Cancer Res 1987;47:936–42.PubMedGoogle Scholar
  25. 25.
    Liu CX, Xiao PG. Recent advances on ginseng research in China.J Ethnopharmacol 1992;36:27–38.PubMedGoogle Scholar
  26. 26.
    Lee KD, Huemer RP. Antitumoral activity of panax ginseng extracts.Jpn J Pharmacol 1971;21:299–301.PubMedGoogle Scholar
  27. 27.
    Yun YS, Lee YS, Jo SK, Jung IS. Inhibition of autochthonous tumor by ethanol insoluble fraction from panax ginseng as an immunomodulator.Planta Med 1993;59:521–4.PubMedGoogle Scholar
  28. 28.
    Kim JY, Germolec DR, Luster MI. Panax ginseng as a potential immunomodulator: studies in mice.Immunopharmacol Immunotoxicol 1990;12:257–76.PubMedGoogle Scholar
  29. 29.
    Rhee YH, Ahn JH, Choe J, Kang KW, Joe C. Inhibition of mutagenesis and transformation by root extracts of panax ginseng in vitro.Planta Med 1991;57:125–8.PubMedGoogle Scholar
  30. 30.
    Willett WC. Micronutrients and cancer risks.Am J Clin Nutr 1994;59:1162S-5S.PubMedGoogle Scholar
  31. 31.
    Greenwald P. Strengths and limitations of methodologic approaches to the study of diet and cancer: summary and future perspectives with emphasis on dietary fat and breast cancer.Prev Med 1989;18:163–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Yu H, Harris RE, Gao YT, Wynder EL. Comparative epidemiology of cancers of the colon, rectum, prostate and breast in Shangai, China versus the United States.Int J Epidemiol 1991;20:76–81.PubMedGoogle Scholar
  33. 33.
    Rose DP. Dietary fiber, phytoestrogens, and breast cancer.Nutrition 1992;8:47–51.PubMedGoogle Scholar
  34. 34.
    Adlercruetz H, Hockerstedt K, Bannwart C, et al. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG).J Steroid Biochem 1987;27:1135–44.Google Scholar
  35. 35.
    Adlercreutz H, Honjo H, Higashi A, et al. Urinary excretion of lignans and isoflavenoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet.Am J Clin Nutr 1991;54:1093–100.PubMedGoogle Scholar
  36. 36.
    Adlercreutz H, Mousavi Y, Clark J, et al. Dietary phytoestrogens and cancer: in vitro and in vivo studies.J Steroid Biochem Mol Biol 1992;41:331–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Adlercreutz H, Bannwart C, Wahala K, et al. Inhibition of human aromatase by mammalian lignans and isoflavenoid phytoestrogens.J Steroid Biochem Mol Biol 1993;44:147–53.CrossRefPubMedGoogle Scholar
  38. 38.
    Foekens JA, Rio MC, Seguin P, et al. Prediction of relapse and survival in breast cancer patients by pS2 protein status.Cancer Res 1990;50:3832–7.PubMedGoogle Scholar
  39. 39.
    Thompson AM, Hawkins RA, Elton RA, Steel CM, Chetty U, Carter DC. pS2 is an independent factor of good prognosis in primary breast cancer.Br J Cancer 1993;68:93–6.PubMedGoogle Scholar
  40. 40.
    Schwartz LH, Koerner FC, Edgerton SM, et al. pS2 espression and response to hormonal therapy in patients with advanced breast cancer.Cancer Res 1991;51:624–8.PubMedGoogle Scholar

Copyright information

© The Society of Surgical Oncology, Inc. 1996

Authors and Affiliations

  • Rosemary B. Duda
    • 3
  • Bret Taback
    • 3
  • Bruce Kessel
    • 1
  • Danielle D. Dooley
    • 3
  • Hua Yang
    • 3
  • Jane Marchiori
    • 1
  • Brant M. Slomovic
    • 2
  • Juan G. Alvarez
    • 2
  1. 1.the Division of Reproductive Endocrinology Beth Israel Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Division of Maternal Fetal MedicineBeth Israel Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Division of Surgical OncologyBeth Israel Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations