Advertisement

Mathematical Notes

, Volume 58, Issue 4, pp 1100–1116 | Cite as

Left and right distributive rings

  • A. A. Tuganbaev
Article

Abstract

By a distributive module we mean a module with a distributive lattice of submodules. LetA be a right distributive ring that is algebraic over its center and letB be the quotient ring ofA by its prime radicalH. ThenB is a left distributive ring, andH coincides with the set of all nilpotent elements ofA.

Keywords

Distributive Lattice Distributive Module Nilpotent Element Quotient Ring Distributive Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gräter, “Ringe mit distributivem Rechtsidealverband,”Results Math.,12, 95–98 (1987).MATHMathSciNetGoogle Scholar
  2. 2.
    A. A. Tuganbaev, “Distributive rings and modules,”Mat. Zametki [Math. Notes],47, No. 2, 115–123 (1990).MATHMathSciNetGoogle Scholar
  3. 3.
    C. Faith,Algebra: Rings, Modules, and Categories, Springer-Verlag, New York-Heidelberg (1973).Google Scholar
  4. 4.
    V. A. Andrunakievich and Yu. M. Ryabukhin,Radicals of Algebras and Structure Theory [in Russian], Nauka, Moscow (1979).Google Scholar
  5. 5.
    B. Stenström,Rings of Quotients: an Introduction to Methods of Ring Theory, Springer-Verlag, Berlin (1975).Google Scholar
  6. 6.
    P. Kohn,Free Rings and Their Relations, Academic Press, London (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. A. Tuganbaev
    • 1
  1. 1.Moscow Energy InstituteUSSR

Personalised recommendations