Mathematical Notes

, Volume 58, Issue 5, pp 1223–1226 | Cite as

Geometric minimality conditions for systems of exponentials inL p [−π, π]

  • M. Yu. Yurkin


A proof is given of the stability theorem for minimal systems of exponentialse(Λ) = {e iλx }λ∈Λ inL p [−π, π], where Λ ⊂ ℂ is a discrete subset. Geometric minimality conditions for such systems are obtained.


Minimality Condition Stability Theorem Minimal System Discrete Subset Geometric Minimality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Levinson,Gap and Density Theorems, Amer. Math. Soc., Providence, R. I. (1940).Google Scholar
  2. 2.
    M. I. Kadets, “Exact value of the Paley-Wiener constant,”Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.],155, 1253–1254 (1964).MATHMathSciNetGoogle Scholar
  3. 3.
    A. M. Sedletskii, “Completeness and nonminimality of systems of exponentials inL p [−π, π],”Sibirsk. Mat. Zh. [Siberian Math. J.],129, No. 1, 159–170 (1988).MathSciNetGoogle Scholar
  4. 4.
    S. A. Avdonin, “Riesz bases of exponentials,”Vestnik Leningrad. Univ., Ser. Mat.-Mekh.-Astronom. [Vestnik Leningrad Univ. Math.], No. 13, 5–12 (1974).MATHMathSciNetGoogle Scholar
  5. 5.
    S. A. Avdonin and I. Joó, “Riesz bases of exponentials and sine-type functions,”Acta Math. Hung.,51, No. 1–2, 3–14 (1988).Google Scholar
  6. 6.
    R. P. Boas, Jr.,Entire Functions, Academic Press, New York (1954).Google Scholar
  7. 7.
    A. M. Sedletskii, “Biorthogonal expansions of functions in series of exponentials on intervals of the real axis,”Uspekhi Mat. Nauk [Russian Math. Surveys],37, No. 5, 51–95 (1982).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. Yu. Yurkin
    • 1
  1. 1.Moscow State UniversityUSSR

Personalised recommendations