Advertisement

Mathematical Notes

, Volume 58, Issue 5, pp 1178–1182 | Cite as

Exact solutions ofG-invariant chiral equations

  • T. Matos
Article

Abstract

A method is suggested for solving the chiral equations (αg,zg−1),¯z+(αg,¯zg−1),z=0, whereg belongs to some Lie groupG. The solution is written out in terms of harmonic maps. The method can be used even for some infinite-dimensional Lie groups.

Keywords

Exact Solution Chiral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Matos, “Chiral equation in gravitational theories,” in: N. Bretón, R. Capovilla, and T. Matos, eds.,Proceedings of International Conference on Aspects of General Relativity and Mathematical Physics, CINVESTAV, Mexico (1994), p. 176.Google Scholar
  2. 2.
    V. A. Belinskii and V. E. Zakharov, “Integration of Einstein's equations by the inverse scattering method and exact soliton solutions,”Zh. Éxper. Teoret. Fiz. [Soviet Phys. JETP],74, No. 6(12), 1953–1971 (1978).Google Scholar
  3. 3.
    D. Kramer, G. Neugebauer, and T. Matos, “Bäcklund transforms of chiral fields,”J. Math. Phys.,32, 2727 (1991).MathSciNetGoogle Scholar
  4. 4.
    V. Hussain, “Self-dual gravity and the chiral model,”Phys. Rev. Lett.,72, 800 (1994).MathSciNetGoogle Scholar
  5. 5.
    T. Matos and J. Plebański, “Axisymmetric stationary solutions as harmonic maps,”Gen. Rel. Grav.,26, 477 (1994).Google Scholar
  6. 6.
    G. Neugebauer and D. Kramer,Bäcklund transformation of Einstein-Maxwell fields, Preprint, Friederich-Schiller-Universität, Jena (1991).Google Scholar
  7. 7.
    T. Matos, “Subspaces and subgroups in five-dimensional gravity,”Ann. Physics,46, 462 (1989).MATHMathSciNetGoogle Scholar
  8. 8.
    T. Matos, G. Rodriguez, and R. Becerril, “Exact solutions of SL(N, ℝ)-invariant chiral fields. One- and two-dimensional subspaces,”J. Math. Phys.,33, 3521 (1992).CrossRefMathSciNetGoogle Scholar
  9. 9.
    T. Matos and P. Wiederhold, “SL(4, ℝ)-invariant chiral fields,”Lett. Math. Phys.,27, 265 (1993).CrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • T. Matos
    • 1
  1. 1.Centro de Investigación y de Estudios Avanzados del I.P.N.México

Personalised recommendations