Mathematical Notes

, Volume 57, Issue 5, pp 522–535 | Cite as

The Hardy-Ramanujan and Halasz inequalities for shifted primes

  • N. M. Timofeev


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Hardy and S. Ramanujan, “The normal number of prime factors of a numbern,”J. Math.,48, 76–92 (1917).Google Scholar
  2. 2.
    L. G. Sathe, “On a problem of Hardy of the distribution of integers having a given number of prime factors,”J. Ind. Math. Soc.,18, 27–81 (1954).MATHMathSciNetGoogle Scholar
  3. 3.
    A. Selberg, “Note on a paper by L. G. Sathe,”J. Ind. Math. Soc.,18, 83–87 (1954).MATHMathSciNetGoogle Scholar
  4. 4.
    G. Halasz, “Remarks to my paper ‘On the distribution of additive and the mean values of multiplicative arithmetic functions’,”Acta Math. Acad. Sci. Hung.,23, 425–432 (1972).MATHMathSciNetGoogle Scholar
  5. 5.
    K. K. Norton, “On the number of restricted prime factors of an integer. I,”Ill. J. Math.,20, 681–705 (1976).MATHMathSciNetGoogle Scholar
  6. 6.
    A. Sarközy, “Remarks on a paper of G. Halasz,”Periodica Math. Hung.,8 (2), 135–150 (1977).MATHGoogle Scholar
  7. 7.
    K. Prakhar,Distribution of Prime Numbers [Russian translation], Mir, Moscow (1967).Google Scholar
  8. 8.
    N. M. Timofeev, “The Erdesh-Kubilus hypothesis on the distribution of values of additive functions on a sequence of shifted numbers,”Acta Arithm.,LVIII, No. 2, 113–131 (1991).MathSciNetGoogle Scholar
  9. 9.
    H. Halberstam and H.-E. Richert,Sieve Methods, Academic Press (1974).Google Scholar
  10. 10.
    B. V. Levin and N. M. Timofeev, “The mean distribution of arithmetic functions over progressions (Vinogradov-Bombieri-type theorems),”Mat. Sb.,125 (167), No. 4, 558–572 (1984).MathSciNetGoogle Scholar
  11. 11.
    J. L. Nicolas, “Sur la distribution des numbers entiere ayant quantité fixee de facteurs premiers,”Acta Arithm.,XLIV, 191–200 (1984).MathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • N. M. Timofeev
    • 1
  1. 1.Vladimir State Pedagogical UniversityUSSR

Personalised recommendations