Mathematical Notes

, Volume 57, Issue 3, pp 300–306 | Cite as

Spherical functions on a finite affine space with a series of Zelevinsky subgroups

  • E. E. Petrov


Spherical Function Affine Space Finite Affine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Zelevinsky, “Representations of finite classical groups. A Hopf algebra approach,” Lect. Notes Math.,869, Springer, Berlin (1981).Google Scholar
  2. 2.
    A. A. Kirillov, “Introduction to the theory of representations and noncommutative harmonic analysis,” Sovremmennye Problemy Matematiki, Fundamentalnye Napravleniya,22, VINITI, Moscow (1988), pp. 5–162.Google Scholar
  3. 3.
    I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Representations of Groups of Rotation and Lorentz Groups [in Russian], Fizmatgiz, Moscow (1950).Google Scholar
  4. 4.
    E. E. Petrov, “Spherical functions on finite centroaffine spaces,” Rept. No. 2303-B87, Dep. in VINITI April 10, 1987.Google Scholar
  5. 5.
    J.-P. Serre, Linear Representations of Finite Groups [Russian translation], Mir, Moscow (1970).Google Scholar
  6. 6.
    A. Barret and R. Ronchka, The Theory of Group Representations and Its Applications [Russian translation], Mir, Moscow (1980).Google Scholar
  7. 7.
    E. E. Petrov, “Harmonics on finite projective spaces,” Mat. Zametki,43, No. 1, 31–37 (1988).MATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • E. E. Petrov
    • 1
  1. 1.Kolomen Pedagogical InstituteUSSR

Personalised recommendations