Skip to main content
Log in

An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: p53 is over-expressed in most human malignancies and is therefore an attractive target for immunotherapy. Unfortunately, a human cytotoxic T cell response to p53 is difficult to generate. p53 knockout transgenic mice may provide a model to circumvent immunologic tolerance to p53 and develop high-affinity p53-specific cytotoxic T lymphocytes (CTL).

Methods: p53 knockout, HLA A2.1 transgenic mice were generated and immunized with the immunodominant wild-type p53 nonamer peptide epitope p53149-157. Two weeks later splenocytes were harvested and stimulated in vitro with acid-treated, p53 peptide-pulsed syngeneic blast cells. Cultures were restimulated weekly with acid-treated, p53 peptide-pulsed Jurkat cells transfected with the HLA A2.1 gene. Peptide-specific cytotoxic activity was measured by chromium release assay, and the resulting CD8+ effectors were cloned via limiting dilution.

Results: P53 peptide-specific CTL were generated against p53149-157. Clones generated from the p53149-157 cell line demonstrated high affinity and specificity for p53149-157 when presented by HLA A2.1+ antigen-presenting cells. The p53149-157 CTL killed only cells overexpressing p53 cells that were HLA A2.1+ and did not kill cells with normal levels of p53 expression or those that were HLA A2.1-.

Conclusion: HLA transgenic mice not previously exposed to the p53 protein provide a useful model for generating high-affinity p53-specific CTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kovach JS, Hartmann A, Blaszyk H, Cunningham J, Schaid D, Sommer SS. Mutation detection by highly sensitive methods indicates that p53 gene mutations in breast cancer can have important prognostic value.Proc Natl Acad Sci USA 1996;93:1093–6.

    Article  CAS  PubMed  Google Scholar 

  2. Levine AJ, Momand J, Finlay CA. The p53 tumour suppressor gene.Nature 1991;351:453–6.

    Article  CAS  PubMed  Google Scholar 

  3. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers.Science 1991;253:49–53.

    CAS  PubMed  Google Scholar 

  4. Vogelstein B, Kinzler KW. p53 function and dysfunction.Cell 1992;70:523–6.

    Article  CAS  PubMed  Google Scholar 

  5. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation.Cell 1989;57:1083–93.

    Article  CAS  PubMed  Google Scholar 

  6. Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O, Oren M. Wild-type p53 can inhibit oncogene-mediated focus formation.Proc Natl Acad Sci USA 1989;86:8763–7.

    CAS  PubMed  Google Scholar 

  7. Oldstone MB, Tishon A, Geckeler R, Lewicki H, Whitton JL. A common antiviral cytotoxic T-lymphocyte epitope for diverse major histocompatibility complex haplotypes: implications for vaccination.Proc Natl Acad Sci USA 1992;89:2752–5.

    CAS  PubMed  Google Scholar 

  8. Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M, Levine AJ. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life.Mol Cell Biol 1988;8:531–9.

    CAS  PubMed  Google Scholar 

  9. Kawakami Y, Robbins PF, Wang RF, Rosenberg SA. Identification of tumor-regression antigens in melanoma. In: DeVita V, Hellman S, Rosenberg S, eds.Important Advances in Oncology 1996. Philadelphia: Lippincott-Raven, 1996:3–21.

    Google Scholar 

  10. Celis E, Tsai V, Crimi C, et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes.Proc Natl Acad Sci USA 1994;91:2105–9.

    CAS  PubMed  Google Scholar 

  11. Houbiers JG, Nijman HW, van der Burg SH, et al. In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53.Eur J Immunol 1993;23:2072–7.

    CAS  PubMed  Google Scholar 

  12. Nijman HW, van der Burg SH, Vierboom MP, Houbiers JG, Kast WM, Melief CJ. p53, a potential target for tumor-directed T cells.Immunol Lett 1994;40:171–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ropke M, Hald J, Guldberg P, et al. Spontaneous human squamous cell carcinomas are killed by a human cytotoxic T lymphocyte clone recognizing a wild-type p53-derived peptide.Proc Natl Acad Sci USA 1996;93:14704–7.

    Article  CAS  PubMed  Google Scholar 

  14. Theobald M, Biggs J, Dittmer D, Levine A, Sherman LA. Targeting p53 as a general tumor antigen.Proc Natl Acad Sci USA 1995;92:11993–7.

    CAS  PubMed  Google Scholar 

  15. Koller BH, Orr HT. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level.J Immunol 1985;134:2727–33.

    CAS  PubMed  Google Scholar 

  16. King DS, Fields CG, Fields GB. A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis.Int J Pept Protein Res 1990;36:255–66.

    CAS  PubMed  Google Scholar 

  17. Tiercy JM, Djavad N, Rufer N, Speiser DE, Jeannet M, Roosnek E. Oligotyping of HLA-A2, -A3, and -B44 subtypes. Detection of subtype incompatibilities between patients and their serologically matched unrelated bone marrow donors.Hum Immunol 1994;41:207–15.

    Article  CAS  PubMed  Google Scholar 

  18. Jacks T, Remington L, Williams BO, et al. Tumor spectrum analysis in p53-mutant mice.Curr Biol 1994;4:1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Parham P, Brodsky FM. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28.Hum Immunol 1981;3:277–99.

    Article  CAS  PubMed  Google Scholar 

  20. Alexander J, Sidney J, Southwood S, et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides.Immunity 1994;1:751–61.

    Article  CAS  PubMed  Google Scholar 

  21. Storkus WJ, Zeh HJ 3d, Salter RD, Lotze MT. Identification of T-cell epitopes: rapid isolation of class I-presented peptides from viable cells by mild acid elution.J Immunother 1993;14:94–103.

    CAS  PubMed  Google Scholar 

  22. Wentworth PA, Celis E, Crimi C, et al. In vitro induction of primary, antigen-specific CTL from human peripheral blood mononuclear cells stimulated with synthetic peptides.Mol Immunol 1995;32:603–12.

    Article  CAS  PubMed  Google Scholar 

  23. D'Amaro J, Houbiers JG, Drijfhout JW, et al. A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs.Hum Immunol 1995;43:13–8.

    Article  PubMed  Google Scholar 

  24. Yu Z, Liu X, McCarty TM, Diamond DJ, Ellenhorn JDI. The use of transgenic mice to generate high affinity p53 specific cytolytic T cells.J Surg Res 1997;69:337–43.

    Article  CAS  PubMed  Google Scholar 

  25. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. Structure of the human class I histocompatibility antigen, HLA-A2.Nature 1987;329:506–12.

    CAS  PubMed  Google Scholar 

  26. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens.Nature 1987;329:512–8.

    CAS  PubMed  Google Scholar 

  27. Rosenberg SA. The development of new cancer therapies based on the molecular identification of cancer regression antigens.Cancer J Sci Am 1995;1:90–100.

    PubMed  Google Scholar 

  28. Crawford LV, Pim DC, Bulbrook RD. Detection of antibodies against the cellular protein p53 in sera from patients with breast cancer.Int J Cancer 1982;30:403–8.

    CAS  PubMed  Google Scholar 

  29. Davidoff AM, Iglehart JD, Marks JR. Immune response to p53 is dependent upon p53/HSP70 complexes in breast cancers.Proc Natl Acad Sci USA 1992;89:3439–42.

    CAS  PubMed  Google Scholar 

  30. Schlichtholz B, Legros Y, Gillet D, et al. The immune response to p53 in breast cancer patients is directed against immunodominant epitopes unrelated to the mutational hot spot.Cancer Res 1992;52:6380–4.

    CAS  PubMed  Google Scholar 

  31. Mayordomo JI, Loftus DJ, Sakamoto H, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines.J Exp Med 1996;183:1357–65.

    Article  CAS  PubMed  Google Scholar 

  32. Roth J, Dittmer D, Rea D, Tartaglia J, Paoletti E, Levine AJ. p53 as a target for vaccines: Recombinant canarypox virus vectors expressing p53 protect mice against lethal tumor challenge.Proc Natl Acad Sci USA 1996;93:4781–6.

    CAS  PubMed  Google Scholar 

  33. Vierboom MP, Nijman HW, Offringa R, et al. Tumor eradication by wild type p53 specific cytotoxic T lymphocytes. Presented at Keystone Symposia: Cellular Immunology and the Immunotherapy of Cancer III 1997; Keystone, CO, February 1–7, 1997:31. Abstract.

  34. Goverman J, Gomez SM, Segesman KD, Hunkapiller T, Laug WE, Hood L. Chimeric immunoglobulin-T cell receptor proteins form functional receptors: implications for T cell receptor complex formation and activation.Cell 1990;60:929–39.

    Article  CAS  PubMed  Google Scholar 

  35. Romeo C, Kolanus W, Amiot M, Seed B. Activation of immune system effector function by T-cell or Fc receptor intracellular domains.Cold Spring Harb Symp Quant Biol 1992;57:117–25.

    CAS  PubMed  Google Scholar 

  36. Kolanus W, Romeo C, Seed B. Lineage-independent activation of immune system effector function by myeloid Fc receptors.EMBO J 1992;11:4861–8.

    CAS  PubMed  Google Scholar 

  37. Hwu X, Shafer GE, Treisman J, et al. Lysis of ovarian cancer cells by human lymphocytes redirected with a chimeric gene composed of an antibody variable region and the Fc receptor gamma chain.J Exp Med 1993;178:361–6.

    Article  CAS  PubMed  Google Scholar 

  38. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc Natl Acad Sci USA 1993;90:720–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarty, T.M., Yu, Z., Liu, X. et al. An HLA-restricted, p53 specific immune response from HLA transgenic p53 knockout mice. Annals of Surgical Oncology 5, 93–99 (1998). https://doi.org/10.1007/BF02303770

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02303770

Key Words

Navigation