, Volume 13, Issue 11, pp 686–692 | Cite as

Gas chromatography on 10 um silica particles

  • R. Dandeneau
  • S. Hawkes


Porous silica microparticles designed for modern liquid chromatography have proven effective in gas chromatography. Columns of 35–50 cm gave plate heights as low as 3.3 particle diameters and speeds of 2400 theoretical plates per second or 500 effective theoretical plates per second. Inlet pressures up to 70 atmospheres were required using hydrogen as carrier gas. The particles as received were too retentive for fast chromatography and gave asymmetric peaks. A coating of fluorosilicone oil overcame both problems. Other coatings were less effective. Bonded phases proved less satisfactory on both counts and also gave substantially less efficient columns and greater flow resistance. Column efficiency and flow resistance were sharply dependent on physical properties of the particles. The most efficient packing was clearly spherical particles of 5–10 μm diameter with narrow size distribution, pore diamters about 50 nm, BET surface areas of 25–50 m2/g and surfaces modified with trifluoropropyl silicone. A six-component hydrocarbon sample was separated in 33 s with a resolution of 4 for the most difficult pair and in 2.6 s with a minimal resolution. Performance was limited by end effects and by available pressure so that much better performance can be expected from longer columns and higher pressures.

Key Words

Gas chromatography Micropacked columns in GC Microparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. P. W. Scott, “Gas Chromatography 1958”, ed.D. H. Desty, Butterworths, 1958, p. 189.Google Scholar
  2. [2]
    J. H. Purnell, C. P. Quinn “Gas Chromatography 1960”, ed.R. P. W. Scott, Butterworths, 1960, p. 184.Google Scholar
  3. [3]
    R. Kieselbach, “Gas Chromatography”, ed.N. Brenner, J. E. Callen, M. D. Weiss, Academic Press, 1962, p. 139.Google Scholar
  4. [4]
    D. H. Desty, A. Goldup, “Gas Chromatography 1960”, ed.R. P. W. Scott, Butterworths, 1960, p. 162.Google Scholar
  5. [5]
    D. H. Desty, A. Goldup, W. T. Swanton, “Gas Chromatography”, ed.N. Brenner, J. E. Callen, M. D. Weiss, Academic Press, 1962, p. 105.Google Scholar
  6. [6]
    M. Myers, J. C. Giddings, Anal. Chem.37, 1453 (1965).CrossRefGoogle Scholar
  7. [7]
    M. Myers, J. C. Giddings, Anal. Chem.38, 294 (1966).CrossRefGoogle Scholar
  8. [8]
    S. Cirendini, J. Vermont, J. C. Gressin, C. L. Guillemin, J. Chromatogr.84, 21 (1973).CrossRefGoogle Scholar
  9. [9]
    C. A. Cramers, J. Rijks, P. Bocek, J. Chromatogr.65, 29 (1972).CrossRefGoogle Scholar
  10. [10]
    J. F. K. Huber, H. H. Lauer, H. Poppe, J. Chromatogr.112, 377 (1975).CrossRefGoogle Scholar
  11. [11]
    R. E. Kaiser, J. Chromatogr.112, 455 (1975).CrossRefGoogle Scholar
  12. [12]
    H. H. Lauer, H. Poppe, J. F. K. Huber, J. Chromatogr.132, 1 (1977).CrossRefGoogle Scholar
  13. [13]
    R. E. Majors, Anal. Chem.44, 1722 (1972).CrossRefGoogle Scholar
  14. [14]
    J. J. Kirkland, “Gas Chromatography 1972”, ed.S. G. Perry, Institute of Petroleum, 1973, p. 39.Google Scholar
  15. [15]
    R. E. Majors, Amer. Lab.7 (3), 13 (1975).Google Scholar
  16. [16]
    J. H. Knox, A. Pryde, J. Chromatogr.112, 171 (1975).CrossRefGoogle Scholar
  17. [17]
    I. Haldsz, H. Schmidt, P. Vogtel, J. Chromatogr.126, 19 (1976).Google Scholar
  18. [18]
    J. C. Giddings, “Dynamics of Chromatography. Part 1. Principles and Theory”, Marcel Dekker, New York, 1965.Google Scholar
  19. [19]
    J. H. Purnell, J. Chem. Soc.1960, 1268.Google Scholar
  20. [20]
    D. Bar, M. Caude, R. Rosset, Analusis4, 108 (1976).Google Scholar
  21. [21]
    P. A. Bristow, P. N. Brittain, C. M. Riley, B. F. Williamson, J. Chromatogr.131, 57 (1977).CrossRefGoogle Scholar
  22. [22]
    R. M. Cassidy, D. S. LeGay, R. W. Frei, Anal. Chem.46, 340 (1974).CrossRefGoogle Scholar
  23. [23]
    J. J. Kirkland, Chromatographia8, 661 (1975).CrossRefGoogle Scholar
  24. [24]
    J. J. Kirkland, J. Chromatogr.125, 231 (1976).Google Scholar
  25. [25]
    T. J. N. Webber, E. H. McKerrell, J. Chromatogr.122, 243 (1976).Google Scholar
  26. [26]
    R. E. Majors, M. J. Hopper, J. Chromatogr. Sci.12, 767 (1974).Google Scholar
  27. [27]
    R. D. Dandeneau, Ph. D. Thesis, Oregon State University, Corvallis, Oregon (1978) pp. 29–51.Google Scholar
  28. [28]
    C. L. Guillemin, M. LePage, R. Beau, A. J. DeVries, Anal. Chem.39, 940 (1967).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1980

Authors and Affiliations

  • R. Dandeneau
    • 1
  • S. Hawkes
    • 1
  1. 1.Department of ChemistryOregon State UniversityCorvallisUSA

Personalised recommendations