, Volume 12, Issue 2, pp 95–105 | Cite as

Modification of silanized supports for gas-liquid chromatography

  • A. N. Korol
  • G. M. Belokleytseva
  • G. V. Filonenko


Certain physico-chemical aspects of the modification of supports are discussed in case of different packings with non-polar stationary phases on silanized support. Variations of non-linearity of the adsorption isotherm and retention data after modification of the non-polar packings were measured. It was found that in many cases the intermolecular forces increase after modification when using polar solutes; this fact is the reason for the temperature range where the modification is desirable. A change in the molar entropy of solution is the main reason for decreasing retention of the polar solutes after the modification. Some requirements of the ideal modification are discussed and examples for “self-modification” of the silicone stationary phases are given.

Key Words

Gas-liquid chromatography Supports Thermodynamics Stationary phase non-polar Solid-liquid interphase 

List of Symbols


relative value of non-linearity of the adsorption isotherm


temperature dependence of the A-value,


constant in eq. (1)


constant in eq. (1)


entropic selectivity


molar heat of the interphase adsorption


molar heat of solution related to the packing


molar heat of solution rleated to solubility in the stationary phase


peak height


distribution coefficient of the interphase adsorption

k, k′, k″



vapour pressure of the pure solute


gas constant


relative retention


molar entropy of solution


the interphase surface


column temperature °K


boiling point °K


specific retention volume


net retention volume


isobaric net retention volume


net retention volume related to solubility


net retention volume related to the interphase adsorption


weight of the stationary phase in the column


weight of the modifier in the column, subscript


at thermodynamic function means the relative value


at retention value means that this value is determined at the minimum of the relationship between VN and h


at the value means that this value is calculated to column temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. R. Conder, D. C. Locke andJ. H. Purnell, J. Phys. Chem.73, 700 (1969).CrossRefGoogle Scholar
  2. [2]
    V. G. Berezkin, J. Chromatogr.98, 477 (1974).Google Scholar
  3. [3]
    G. V. Filonenko, T. I. Dovbush andA. N. Korol, Chromatographia7, 293 (1974).CrossRefGoogle Scholar
  4. [4]
    D. M. Ottenstein, J. Gas Chromatogr.1 (4), 11 (1963); J. Chromatogr. Sci.11, 136 (1973).Google Scholar
  5. [5]
    T. Onaka andT. Okamoto, Chem. Pharm. Bull. (Japan)10, 757 (1962).Google Scholar
  6. [6]
    A. W. Spears, Anal. Chem.35, 320 (1963).CrossRefGoogle Scholar
  7. [7]
    E. C. Ormerod andR. P. W. Scott, J. Chromatogr.2, 65 (1959).CrossRefGoogle Scholar
  8. [8]
    B. G. Belenki, A. G. Vitenberg, L. D. Turkova andN. N. Chenyshkov, Izv. Akad. Nauk SSSR, ser. chim.,269 (1967).Google Scholar
  9. [9]
    J. F. K. Huber andA. I. M. Keulemans, Informal Symposium on Gas Chromatography, see J. Gas Chromatogr. 1 (4), 28 (1963).Google Scholar
  10. [10]
    E. C. Horning, E. A. Moscatelli andC. C. Sweely, Chem. & Ind. (London) 1959, 751.Google Scholar
  11. [11]
    G. A. Howard andA. J. P. Martin, Biochem. J.46, 532 (1950).Google Scholar
  12. [12]
    W. Averill inN. Brenner, J.E. Callen andM. D. Weiss (Editors), “Gas Chromatography”, Academic Press, New York, 1962, p. 1.Google Scholar
  13. [13]
    T. Johns, inV. J. Coates, H. J. Noebels andI. S. Fagerson (Editors), “Gas Chromatography”, Academic Press, New York, 1958, p. 31.Google Scholar
  14. [14]
    B. A. Knights, J. Gas Chromatogr. 2, 338 (1964).Google Scholar
  15. [15]
    M. B. Evans, Chromatographia4, 441 (1971).CrossRefGoogle Scholar
  16. [16]
    W. A. Aue, C. R. Hastings andK. O. Gerhardt, J. Chromatogr.77, 299 (1973).CrossRefGoogle Scholar
  17. [17]
    W. A. Aue andD. R. Younker, J. Chromatogr.88, 7 (1974).CrossRefGoogle Scholar
  18. [18]
    C. R. Hastings andW. A. Aue, J. Chromatogr.89, 369 (1974).CrossRefGoogle Scholar
  19. [19]
    M. S. Vigdergauz andR. S. Ismailo, “Primenenie Gazovoy Chromatografii dla Izmerenia Fiziko-Chimicheskich Svoistv Veshchestv” (Use of Gas Chromatography for the Determination of Physico-Chemical Properties of Substances), Nauka, Moscow, 1970, p. 100.Google Scholar
  20. [20]
    R. L. Snyder, Separ. Sci.1, 191 (1966).Google Scholar
  21. [21]
    J. J. Franken andM. M. P. Trijbels, J. Chromatogr.91, 425 (1974).Google Scholar
  22. [22]
    M. L. Hertl, J. Phys. Chem.77, 1965 (1973).Google Scholar
  23. [23]
    A. N. Korol, J. Chromatogr.67, 213 (1972).CrossRefGoogle Scholar
  24. [24]
    J. Serpinet, Chromatographia8, 18 (1975).CrossRefGoogle Scholar
  25. [25]
    A. N. Korol, Uspekhi Chimii (USSR)41, 321 (1972).Google Scholar
  26. [26]
    A. N. Korol, L. S. Lysiuk andG. V. Filonenko, Teoret. Experim. Chimia (USSR)12, 796 (1976).Google Scholar
  27. [27]
    A. N. Korol andL. S. Lysiuk, Dokl. Akad. Nauk SSSR233, 406 (1977).Google Scholar
  28. [28]
    A. N. Korol, Chromatographia8, 385 (1975).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1979

Authors and Affiliations

  • A. N. Korol
    • 1
  • G. M. Belokleytseva
    • 1
  • G. V. Filonenko
    • 1
  1. 1.Institute of Physical Chemistry, Academy of SciencesUkrainian Soviet Socialist RepublicKievUSSR

Personalised recommendations