International Journal of Theoretical Physics

, Volume 35, Issue 11, pp 2377–2390 | Cite as

Product of partition logics, orthoalgebras, and automata

  • Anatolij Dvurečenskij
  • Karl Svozil


We attempt to define a coupled system consisting of two partition logics and we introduce a product of partition logics. These partition logics have a close connection with Moore and Mealy-type automata. We show how the coupled system of two automata is connected with the product of partition logics, and present some illustrative examples.


Field Theory Elementary Particle Quantum Field Theory Couple System Close Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aerts, D., and Daubechies, I. (1978). Physical justification for using tensor product to describe quantum systems as one joint system,Helvetica Physica Acta,51, 661–675.MathSciNetGoogle Scholar
  2. Boole, G. (1854).An Investigation of the Laws of Thought, Macmillan, London [reprinted Dover Press, New York (1967)].Google Scholar
  3. Busch, P., Lahti, P. J., and Mittelstaedt, P. (1991).The Quantum Theory of Measurement, Springer-Verlag, Berlin.Google Scholar
  4. Dvurečenskij, A. (1995). Tensor product of difference spaces,Transactions of the American Mathematical Society,347, 1043–1057.MathSciNetGoogle Scholar
  5. Dvurečenskij, A., and Pulmannová, S. (1994). Tensor product of D-posets and D-test spaces,Reports on Mathematical Physics,34, 251–275.MathSciNetGoogle Scholar
  6. Dvurečenskij, A., Pulmannová, S., and Svozil, K. (1995). Partition logics, orthoalgebras and automata,Helvetica Physica Acta,68, 407–428.MathSciNetGoogle Scholar
  7. Foulis, D. J. (1989). Coupled physical systems,Foundations of Physics,19, 905–922.CrossRefMathSciNetGoogle Scholar
  8. Foulis, D. J., and Bennett, M. K. (1993). Tensor products of orthoalgebras,Order,10, 271–282.CrossRefMathSciNetGoogle Scholar
  9. Foulis, D., and Pták, P. (1995). On the tensor product of a Boolean algebra and an orthoalgebra,Czechoslovak Mathematical Journal,45(120), 117–126.MathSciNetGoogle Scholar
  10. Foulis, D., and Randall, C. (1981). Empirical logic and tensor products, inInterpretations and Foundations of Quantum Theories, A. Neumann ed., Wissenschaftsverlag, Bibliographisches Institut, Mannheim, Germany, pp. 9–20.Google Scholar
  11. Foulis, D. J., Greechie, R. J., and Rüttimann, G. T. (1992). Filters and supports in orthoalgebras,International Journal of Theoretical Physics,31, 787–807.CrossRefGoogle Scholar
  12. Golfin, A. (1987). Representations and products of Lattices, Ph.D. Thesis, University of Massachusetts, Amherst, Massachusetts.Google Scholar
  13. Hartmanis, J., and Stearns, R. E. (1966).Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  14. Hopcroft, J. E., and Ullman, J. D. (1979).Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, Massachusetts.Google Scholar
  15. Kläy, M., Randall, C., and Foulis, D. (1987). Tensor products and probability weights,International Journal of Theoretical Physics,26, 199–219.CrossRefADSMathSciNetGoogle Scholar
  16. Lock, R. (1990). The tensor product of generalized sample spaces which admit a unital set of dispersion-free weights,Foundations of Physics,20, 477–498.CrossRefMathSciNetGoogle Scholar
  17. Matolcsi, T. (1975). Tensor product of Hilbert lattices and free orthodistributive product of orthomodular lattices,Acta Scientarum Mathematicarum (Szeged),37, 263–272.MATHMathSciNetGoogle Scholar
  18. Moore, E. F. (1956). Gedanken-experiments on sequential machines, inAutomata Studies, C. E. Shannon and J. McCarthy, eds., Princeton University Press, Princeton, New Jersey.Google Scholar
  19. Navara, M., and Rogalewicz, V. (1991). The pasting constructions for orthomodular posets,Mathematische Nachrichten,154, 157–168.MathSciNetGoogle Scholar
  20. Pták, P., and Pulmannová, S. (1991).Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht.Google Scholar
  21. Randall, C., and Foulis, D. (1981). Empirical statistics and tensor products, inInterpretations and Foundations of Quantum Theory, H. Neumann, ed., Wissenschaftsverlag, Bibliographisches Institut, Mannheim, Germany, pp. 21–28.Google Scholar
  22. Schaller, M., and Svozil, K. (1994). Partition logics of automata,Nuovo Cimento,109B, 167–176.MathSciNetGoogle Scholar
  23. Schaller, M., and Svozil, M. (1995). Automaton partition logic versus quantum logic,International Journal of Theoretical Physics,34(8), 1741–1750.CrossRefMathSciNetGoogle Scholar
  24. Schaller, M., and Svozil, K. (1996). Automaton logic,International Journal of Theoretical Physics,35 (to appear).Google Scholar
  25. Svozil, K. (1993).Randomness and Undecidability in Physics, World Scientific, Singapore.Google Scholar
  26. Wilce, A. (1990). Tensor product of frame manuals,International Journal of Theoretical Physics,29, 805–814.CrossRefMATHMathSciNetGoogle Scholar
  27. Zecca, A. (1978). On the coupling of quantum logics,Journal of Mathematical Physics,19, 1482–1485.CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Anatolij Dvurečenskij
    • 1
  • Karl Svozil
    • 2
  1. 1.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute for Theoretical PhysicsTechnical University of ViennaViennaAustria

Personalised recommendations