Skip to main content
Log in

Fundamentals of fuzzy probability theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The canonical classical extension of quantum mechanics studied recently by E. G. Beltrametti and S. Bugajski opens a new way toward generalizing the standard probability theory. The emerging fuzzy probability theory is able to give a full account of both classical and quantal probabilities, and—like the standard probability theory—could be of universal use, far outside the borders of physics. A specific feature of this hypothetical theory of probability is its mixed, classical-quanta character: classical as well as quantal random variables are described on an equal footing in a unified framework. Some new features of the fuzzy probability theory are shown on simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfsen, E. M. (1971).Compact Convex Sets and Boundary Integrals, Springer-Verlag, Berlin.

    Google Scholar 

  • Ali, S. T., and Prugovečki, E. (1977).Journal of Mathematical Physics,18, 219.

    Article  ADS  Google Scholar 

  • Aspect, A. (1976).Physical Review D,14, 1944.

    Article  ADS  Google Scholar 

  • Aspect, A., Grangier, P., and Roger, G. (1981).Physical Review Letters,47, 460.

    Article  ADS  Google Scholar 

  • Aspect, A., Grangier, P., and Roger, G. (1982).Physical Review Letters,49, 91.

    ADS  Google Scholar 

  • Bauer, H. (1981).Probability Theory and Elements of Measure Theory, 2nd English ed., Academic Press, London.

    Google Scholar 

  • Bell, J. S. (1964).Physics,1, 195.

    Google Scholar 

  • Beltrametti, E. G., and Bugajski, S. (1995).Journal of Physics A,28, 3329.

    MathSciNet  Google Scholar 

  • Beltrametti, E. G., and Bugajski, S. (1996).Journal of Physics A, in press.

  • Beltrametti, E. G., and Cassinelli, G. (1981).The Logic of Quantum Mechanics, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Bugajski, S. (1993).International Journal of Theoretical Physics,32, 969.

    MathSciNet  Google Scholar 

  • Busch, P., and Quadt, R. (1993).International Journal of Theoretical Physics,32, 2261.

    MathSciNet  Google Scholar 

  • Busch, P., Hellwig, K.-E., and Stulpe, W. (1993).International Journal of Theoretical Physics,32, 399.

    MathSciNet  Google Scholar 

  • Busch, P., Grabowski, M., and Lahti, P. J. (1995).Operational Quantum Physics, Springer-Verlag, Berlin.

    Google Scholar 

  • Davies, E. B. (1972).Journal of Mathematical Physics,13, 39.

    MATH  Google Scholar 

  • Ghirardi, G. C., Rimini, A., and Weber, T. (1976).Nuovo Cimento,36B, 97.

    Google Scholar 

  • Holevo, A. S. (1982).Probabilistic and Stochastic Aspects of Quantum Theory, North-Holland, Amsterdam.

    Google Scholar 

  • Jaynes, E. T. (1985). Bayesian methods: General background, inProceedings of the Fourth Annual Workshop on Bayesian/Maximum Entropy Methods in Geophysical Inverse Problems (Calgary 1985), J. H. Justice, ed., Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Ludwig, G. (1954).Die Grundlagen der Quantenmechanik, Springer-Verlag, Berlin [English translation, Springer-Verlag, Berlin (1983)].

    Google Scholar 

  • Misra, B. (1974). On a new definition of quantal states, inPhysical Reality and Mathematical Description, C. P. Enz and J. Mehra, eds., Reidel, Dordrecht, Holland, pp. 455–476.

    Google Scholar 

  • Newmann, H. (1985). The size of sets of physically possible states and effects, inRecent Development in Quantum Logic, P. Mittelstaedt and E.-W. Stachow, eds., Bibliographisches Institut, Mannheim, pp. 337–348.

    Google Scholar 

  • Neveu, J. (1965).Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco.

    Google Scholar 

  • Prugovečki, E. (1986).Stochastic Quantum Mechanics and Quantum Space Time, 2nd ed., D. Reidel, Dordrecht, Holland.

    Google Scholar 

  • Reed, M., and Simon, B. (1972).Methods of Modern Mathematical Physics 1. Functional Analysis, Academic Press, New York.

    Google Scholar 

  • Singer, M., and Stulpe, W. (1992).Journal of Mathematical Physics,33, 131.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bugajski, S. Fundamentals of fuzzy probability theory. Int J Theor Phys 35, 2229–2244 (1996). https://doi.org/10.1007/BF02302443

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02302443

Keywords

Navigation