Advertisement

International Journal of Theoretical Physics

, Volume 35, Issue 6, pp 1117–1140 | Cite as

Test groups and effect algebras

  • D. J. Foulis
  • M. K. Bennett
  • R. J. Greechie
Article

Abstract

A test group is a pair (G, T) whereG is a partially ordered Abelian group andT is a generative antichain in its positive cone. It is shown here that effect algebras and algebraic test groups are coextensive, and a method for calculating the algebraic closure of a test group is developed. Some computational algorithms for studying finite effect algebras are introduced, and the problem of finding quotients of effect algebras is discussed.

Keywords

Field Theory Elementary Particle Quantum Field Theory Abelian Group Test Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, M. K., and Foulis, D. J. (1993). Tensor products of orthoalgebras,Order,10(3), 271–282.MathSciNetGoogle Scholar
  2. Bennett, M. K., and Foulis, D. J. (1995). Phi-symmetric effect algebras,Foundations of Physics,25(12), 1699–1722.CrossRefMathSciNetGoogle Scholar
  3. Bennett, M. K., and Foulis, D. J. (n.d.). Interval and scale effect algebras.Advances in Mathematics, to appear.Google Scholar
  4. Bourbaki, N. (1958).Algèbre Multilinéaire, VII Eléments de Mathématics, I Les Structures Fondamentales de L'Analyse, Book II,Algèbre, Hermann, Paris, Chapter 3.Google Scholar
  5. Darnel, M. R. (1995).Theory of Lattice-Ordered Groups, Dekker, New York.Google Scholar
  6. Dvurečenskij, A. (1995). Tensor product of difference posets,Transactions of the American Mathematical Society,347(3), 1043–1057.MathSciNetGoogle Scholar
  7. Dvurečenskij, A., and Pulmannová, S. (1994a). Tensor products of D-posets and D-test spaces, Preprint, Mathematical Institute, Slovak Academy of Sciences.Google Scholar
  8. Dvurečenskij, A., and Pulmannová, S. (1994b). D-test spaces and difference posets,Reports on Mathematical Physics,34(2), 151–170.MathSciNetGoogle Scholar
  9. Foulis, D. J., and Bennett, M. K. (1994). Effect algebras and unsharp quantum logics,Foundations of Physics,24(10), 1325–1346.CrossRefMathSciNetGoogle Scholar
  10. Foulis, D. J., Greechie, R. J., and Rüttimann, G. T. (1992). Filters and supports in orthoalgebras,International Journal of Theoretical Physics,31(5), 789–802.CrossRefMathSciNetGoogle Scholar
  11. Foulis, D. J., Greechie, R. J., and Rüttimann, G. T. (1993). Logico-algebraic structures II. Supports in test spaces,International Journal of Theoretical Physics,32(10), 1675–1690.CrossRefMathSciNetGoogle Scholar
  12. Foulis, D. J., Greechie, R. J., and Bennett, M. K. (1994). Sums and products of interval algebras,International Journal of Theoretical Physics,33(11), 2119–2136.CrossRefMathSciNetGoogle Scholar
  13. Goodearl, K. R. (1986).Partially Ordered Abelian Groups with Interpolation, American Mathematical Society, Providence, Rhode Island.Google Scholar
  14. Goodearl, K. R., Handelman, D. E., and Lawrence, J. W. (1980). Affine Representations of Grothendieck Groups and Applications to Rickart C*-Algebras and ℵ0-Continuous Regular Rings, Memoir 234, American Mathematical Society, Providence, Rhode Island.Google Scholar
  15. Greechie, R. J., and Foulis, D. J. (1995). The transition to effect algebras,International Journal of Theoretical Physics,34(8), 1–14.CrossRefMathSciNetGoogle Scholar
  16. Greechie, R. J., Foulis, D. J., and Pulmannová, S. (1995). The center of an effect algebra,Order,12, 91–106.CrossRefMathSciNetGoogle Scholar
  17. Gudder, S. P. (1995). Chain tensor products and interval effect algebras, Preprint, Department of Mathematics, University of Denver.Google Scholar
  18. Gudder, S. P. (n.d.). Effect algebras and tensor products of S-sets,International Journal of Theoretical Physics, to appear.Google Scholar
  19. Hungerford, T. W. (1974).Algebra, Holt, Rinehart, and Winston, New York.Google Scholar
  20. Kalmbach, G. (1983).Orthomodular Lattices, Academic Press, New York.Google Scholar
  21. Murphy, G. J. (1992). Partially ordered groups,Bulletin of the Irish Mathematical Society,28, 11–19.MATHMathSciNetGoogle Scholar
  22. Perles, M. A. (1963). On Dilworth's theorem in the infinite case,Israel Journal of Mathematics,1, 108–109.MATHMathSciNetGoogle Scholar
  23. Pulmannová, S., and Wilce, A. (1994). Representations of D-Posets, Preprint, Mathematical Institute, Slovak Academy of Sciences.Google Scholar
  24. Ravindran, K. (1995). On some structural aspects of effect algebras, preprint, Department of Mathematics, Louisiana Tech University, Ruston, Louisiana.Google Scholar
  25. Wilce, A. (1992). Tensor products in generalized measure theory,International Journal of Theoretical Physics,31(11), 1915–1928.CrossRefMATHMathSciNetGoogle Scholar
  26. Wilce, A. (1995). Perspectivity and congruence in partial Abelian semigroups, Preprint, Department of Mathematics, University of Pittsburgh/Johnstown.Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • D. J. Foulis
    • 1
  • M. K. Bennett
    • 1
  • R. J. Greechie
    • 2
  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherst
  2. 2.Department of Mathematics and StatisticsLouisiana Tech UniversityRuston

Personalised recommendations