International Journal of Theoretical Physics

, Volume 35, Issue 8, pp 1753–1765 | Cite as

Theoretical calculation of transport properties of the noble gases He and Ne and their binary mixtures at low density

  • Li Xiufeng
  • Li Xi


Using the Tang-Toennies potential model and a set of expressions given by J. Kestinet al., we calculate the transport properties of the two noble gases He and Ne and of their binary mixtures, based upon the calculation of the interaction potential. Our calculated results for the transport properties are restricted to low densities but cover the full temperature interval extending from 50 K to the onset of ionization; the mole fraction of the binary mixtures isx1:x2=0.25:0.75. Our results are comparable to the best theoretical results given by J. Kestinet al.


Field Theory Elementary Particle Quantum Field Theory Mole Fraction Theoretical Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., and Stegun, I. A., eds. (1970).Handbook of Mathematical Functions, Dover, New York.Google Scholar
  2. Ahlrichs, R., Bohm, H. J., Brode, S., Tang, K. T., and Toennies, J. P. (1988).Journal of Chemical Physics,88, 6290.CrossRefADSGoogle Scholar
  3. Chapman, S., and Cowling, T. G. (1939).The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge.Google Scholar
  4. Gutowski, M., Verbeek, J., Van Leuthe, J. H., and Chalasinski, G. (1987).Chemical Physics,111, 271.CrossRefGoogle Scholar
  5. Hildebrand, F. B. (1956).Introduction to Numerical Analysis, McGraw-Hill, New York.Google Scholar
  6. Hirschfelder, J. O., Curtis, C. F., and Bird, R. B. (1964).The Molecular Theory of Gases and Liquids, Wiley, New York, Chapter 8.Google Scholar
  7. Kestin, J., Knierim, K., Mason, E. A., Najafi, B., Ro, S. T., and Vadlman, M. (1984).Journal of Chemical Reference Data,13, 229.ADSGoogle Scholar
  8. Langhoff, P., and Karplus, M. (1976).Journal of Chemical Physics,53, 1.Google Scholar
  9. Skullerud, H. R., and Larsen, P. H. (1990).Journal of Physics B: Atomic, Molecular and Optical Physics,23, 1017.CrossRefADSGoogle Scholar
  10. Standard, J. M., and Certain, P. R. (1985).Journal of Chemical Physics,83, 3002.CrossRefADSGoogle Scholar
  11. Tang, K. T., and Toennies, J. P. (1978).Journal of Chemical Physics,68, 5501.ADSGoogle Scholar
  12. Tang, K. T., and Toennies, J. P. (1984).Journal of Chemical Physics,80, 3726.CrossRefADSGoogle Scholar
  13. Tang, K. T., and Yang, X. D. (1990).Physical Review A,42, 311.CrossRefADSGoogle Scholar
  14. Tang, K. T., Norbeck, J. M., and Certain, P. R. (1985).Journal of Chemical Physics,64, 3063.ADSGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Li Xiufeng
    • 1
  • Li Xi
    • 1
  1. 1.Department of PhysicsGansu United UniversityLanzhouChina

Personalised recommendations