Advertisement

International Journal of Theoretical Physics

, Volume 35, Issue 8, pp 1709–1718 | Cite as

Invariants of topological quantum mechanics

  • M. Mekhfi
Article
  • 28 Downloads

Abstract

We investigate a new topological invariant of the punctured plane using a Hamiltonian approach. The Hamiltonian is built out of topological invariants available on the punctured plane. On the other hand it is shown that the model is a generalized version, using the appropriate language of homotopy, of the superconformal quantum mechanics (gauge approach) recently proposed by L. Baulieuet al. This relationship allows a better understanding of the structure and results of the gauge approach and makes possible a proper identification of the topological invariants which emerge from it.

Keywords

Field Theory Elementary Particle Quantum Field Theory Quantum Mechanic Generalize Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhoury, R., and Comtet, A. (1984).Nuclear Physics B,246, 253.CrossRefADSMathSciNetGoogle Scholar
  2. Alvarez Gaumé, L. (1983).Communications in Mathematical Physics,90, 161.MATHMathSciNetGoogle Scholar
  3. Alvez, N. A., Aratyn, H., and Zimmerman, A. H. (1985).Physical Review D,31, 3298.ADSMathSciNetGoogle Scholar
  4. Balachandran, A. P., Marmo, G., Skagerstam, B. S., and Stern, A. (1991).Classical Topology and Quantum States, World Scientific, Singapore.Google Scholar
  5. Baulieu, L., and Arago de Carvalho, C. (1991a).Physics Letters B,275, 323.Google Scholar
  6. Baulieu, L., and Arago de Carvalho, C (1991b).Physics Letters B,275, 335.Google Scholar
  7. Baulieu, L. and Rabinovici, E. (1993).Physics Letters B,316, 93.CrossRefADSMathSciNetGoogle Scholar
  8. Birmingham, D., and Rakowski, M. (1989).Modern Physics Letters A,4, 1753.ADSMathSciNetGoogle Scholar
  9. Birmingham, D., Rakowski, M., and Thompson, G. (1990).Nuclear Physics B,329, 83.CrossRefADSMathSciNetGoogle Scholar
  10. Birmingham, D., Blau, M., Rakowski, M., and Thompson, G. (1991).Physics Reports,209, 129.CrossRefADSMathSciNetGoogle Scholar
  11. De Alfaro, V., Fubini, S., and Furlan, G. (1976).Nuovo Cimento,34A, 569.Google Scholar
  12. Delduc, F., Gieres, F., and Sorella, S. P. (1989).Physics Letters B,225, 367.CrossRefADSMathSciNetGoogle Scholar
  13. Friedan, D., and Windey, P. (1984).Nuclear Physics B,235, 395.CrossRefADSMathSciNetGoogle Scholar
  14. Fubini, S., and Rabinovici, E. (1984).Nuclear Physics B,245, 17.CrossRefADSMathSciNetGoogle Scholar
  15. Hu, S. T. (1959).Homotopy Theory, Academic Press, New York.Google Scholar
  16. Maunder, C. R. F. (1979).Algebraic Topology, Van Nostrand, New York.Google Scholar
  17. Myers, R. (1990).Interntational Journal of Modern Physics A,5, 1369.ADSMathSciNetGoogle Scholar
  18. Mekhfi, M. (1995). Cohomological Quantum Mechanics and Calculability of Observables to appear in IJMPA.Google Scholar
  19. Mekhfi, M. (n.d.). Topological setting of Bessel functions, ICTP preprint, to appear.Google Scholar
  20. Witten, E. (1982).Nuclear Physics B,202, 253.CrossRefADSMathSciNetGoogle Scholar
  21. Witten, E. (1988a).Communications in Mathematical Physics,117, 353.CrossRefMATHMathSciNetGoogle Scholar
  22. Witten, E. (1988b).Communications in Mathematical Physics,118, 601.CrossRefMathSciNetGoogle Scholar
  23. Witten, E. (1988c).Physics Letters B,206, 601.CrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • M. Mekhfi
    • 1
  1. 1.Laboratoire de Physique ThéoriqueUniversité d'Oran Es-seniaOranAlgeria

Personalised recommendations