Journal of Molecular Evolution

, Volume 19, Issue 2, pp 145–152 | Cite as

Origin of the duplicated ribonuclease gene in guinea-pig: Comparison of the amino acid sequences with those of two close relatives: Capybara and cuis ribonuclease

  • Jaap J. Beintema
  • Ben Neuteboom


The amino acid sequences of the pancreatic ribonuclease from capybara (Hydrochoerus hydrochaeris) and cuis (Galea musteloides) were determined. Both species belong to the same superfamily of the hystricomorph rodents as the guinea-pig. In guineapig pancreas two ribonucleases are present as a result of a rencent gene duplication, but in capybara and cuis pancreas only one single ribonuclease has been found. A most parsimonious tree of ribonucleases indicates that the gene duplication leading to both guinea-pig ribonucleases occurred before the divergence of guineapig from capybara and cuis. This would mean that changes in expression of the ribonuclease genes have occurred in these taxa.

Cuis and capybara ribonuclease have no Asn-X-Ser/Thr sequences and are carbohydrate-free proteins. Capybara ribonculease has leucine at position 114, a position occupied by proline in thecis-configuration in bovine pancreatic ribonuclease.

Key words

RNAse Amino acid sequence Gene duplication Guinea-pig 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beintema JJ (1980) Ribonuclease variation within the species. In: Peeters H (ed) Proc. 28th coll. protides biol. fluids. Pergamon Press, Oxford, pp 139–141Google Scholar
  2. Beintema JJ, Lenstra JA (1982) Evolution of mammalian pancreatic ribonucleases. In: Goodman M (ed) Macromolecular sequences in systematic and evolutionary biology. Plenum, New York, pp 43–73Google Scholar
  3. Beintema JJ, Gaastra W, Lenstra JA, Welling GW, Fitch WM (1977) The molecular evolution of pancreatic ribonuclease. J Mol Evol 10:49–71CrossRefPubMedGoogle Scholar
  4. Beintema JJ, Lenstra JA, Fitch WM (1980) The molecular evolution of mammalian pancreatic ribonuclease. In: Peeters H (ed) Proc. 28th coll. protides biol. fluids. Pergamon Press, Oxford, pp 133–137Google Scholar
  5. Beintema JJ, Knol G, Martena B (1982) The primary structures of pancreatic ribonucleases from African porcupine and casiragua, two hystricomorph rodent species. Biochim Biophys Acta 705:102–110PubMedGoogle Scholar
  6. Eaker DL, King TP, Craig LC (1965) Des-lysyl glutamyl and deslysyl pyroglutamyl ribonucleases. II Structural studies. Biochemistry 4:1479–1486PubMedGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  8. Gaastra W, Welling GW, Beintema JJ (1978) The amino acid sequence of kangaroo pancreatic ribonuclease. Eur J Biochem 86:209–217CrossRefPubMedGoogle Scholar
  9. Goodman M, Czelusniak J, Moore GW, Romero-Herrara AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, A parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Zool 28:132–163Google Scholar
  10. Gray WR (1967) Dansyl chloride procedure. Methods Enzymol 11:139–151Google Scholar
  11. Hartley BS (1970) Strategy and tactics in protein chemistry. First BDH lecture. Biochem J 119:805–822PubMedGoogle Scholar
  12. Horuk R, Goodwin P, O'Connor K, Neville RWJ, Lazarus NR, Stone D (1979) Evolutionary change in the insulin receptors of hystricomorph rodents. Nature 279:439–440CrossRefGoogle Scholar
  13. Horuk R, Blundell TL, Lazarus NR, Neville RWJ, Stone D, Wollmer A (1980) A monomeric insulin from the porcupine (Hystrix cristata), an old world hystricomorph. Nature 286:822–824CrossRefPubMedGoogle Scholar
  14. Jekel PA, Sips HJ, Lenstra JA, Beintema JJ (1979) The amino acid sequence of hamster pancreatic ribonuclease. Biochimie 61:827–839PubMedGoogle Scholar
  15. Morris D (1965) The Mammals. Hodder and Stoughton, LondonGoogle Scholar
  16. Offord RE (1966) Electrophoretic mobilities of peptides on paper and their use in the determination, of amide groups. Nature 211:591–593PubMedGoogle Scholar
  17. Richards FM, Wyckoff HW (1973) In: Philips DC, Richards FM (eds) Atlas of molecular structures in biology. Vol 1, Ribonuclease-S. Clarendon, OxfordGoogle Scholar
  18. Schmid FX, Blaschek H (1981) A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem 114:111–117PubMedGoogle Scholar
  19. Shapira R (1962) A spectrophotometric method for the measurement of ribonuclease activity. Anal Biochem 3:308–320CrossRefPubMedGoogle Scholar
  20. Suzuki H, Greco L, Parente A, Farina B, La Montagna R, Leone E (1976) Bovine seminal ribonuclease. In: Dayhoff MO (ed) Atlas of protein sequence and structure. Vol 5, Suppl. 2. National Biomedical Research Foundation, Washington DC, p 93Google Scholar
  21. Van den Berg A, Van den Hende-Timmer L, Beintema JJ (1976) Isolation, properties and primary structure of coypu and chinchilla pancreatic ribonuclease. Biochim Biophys Acta 453:400–409Google Scholar
  22. Van den Berg A, Van den Hende-Timmer L, Hofsteenge J, Gaastra W, Beintema JJ (1977) Guinea-pig pancreatic ribonucleases. Isolation, properties, primary structure and glycosidation. Eur J Biochem 75:91–100CrossRefPubMedGoogle Scholar
  23. Vereijken JM, Hofsteenge, J, Bak HJ, Beintema JJ (1980) The amino acid sequence of the three smallest CNBr peptides from p-hydroxybenzoate hydroxylase fromPseudomonas fluorescens. Eur J Biochem 113:151–157PubMedGoogle Scholar
  24. Vereijken JM, Schwander EH, Soeter NM, Beintema JJ (1982) Limited proteolysis of the 94000-Dalton subunit ofPanulirus interruptus hemocyanin; the carbohydrate attachment site. Eur J Biochem 123:283–289CrossRefPubMedGoogle Scholar
  25. Welling GW, Leijenaar-van den Berg G, van Dijk B, van den Berg A, Groen G, Gaastra W, Emmens M, Beintema JJ (1975) Evolution of mammalian pancreatic ribonucleases. Biosystems 6:239–245CrossRefPubMedGoogle Scholar
  26. Wierenga RK, Huizinga JD, Gaastra W, Welling GW, Beintema JJ (1973) Affinity chromatography of porcine pancreatic ribonuclease and reinvestigation of the N-terminal amino acid sequence. FEBS Lett 31:181–185CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jaap J. Beintema
    • 1
  • Ben Neuteboom
    • 1
  1. 1.Biochemisch LaboratoriumRijksuniversiteitGroningenThe Netherlands

Personalised recommendations