Skip to main content
Log in

Many gene-regulatory proteins appear to have a similar α-helical fold that binds DNA and evolved from a common precursor

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Amino acid and DNA sequence comparisons suggest that many sequence-specific DNA-binding proteins have in common and homologous region of about 22 amino acids. This region corresponds to two consecutive α-helices that occur in bot Cro and cI repressor proteins of bacteriophage λ and in catabolite gene activator protein ofEscherichia coli and are presumed to interact with DNA. The results obtained here suggest that this α-helical DNA-binding fold occurs in many proteins that regulate gene expression. It also appears that this DNA-binding unit evolved from a common evolutionary precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba H, Fujimoto S, Ozaki N (1982) Molecular cloning and nucleotide sequencing of the gene forE. coli cAMP receptor protein. Nucleic Acids Res 10:1345–1361

    CAS  PubMed  Google Scholar 

  • Anderson WF, Ohlendorf DH, Takeda Y, Matthews BW (1981) Structure of the cro repressor from bacteriophage lambda and its interaction with DNA. Nature 290:754–758

    CAS  PubMed  Google Scholar 

  • Anderson WF, Takeda Y, Ohlendorf DH, Matthews BW (1982) Proposed α-helical super-secondary structure associated with protein-DNA recognition. J Mol Biol 159:745–751

    Article  CAS  PubMed  Google Scholar 

  • Astell CR, Ahlstrom-Jonasson L, Smith M, Tatchell K, Nasmyth KA, Hall BD (1981) The sequence of the DNAs coding for the mating-type loci ofSaccharomyces cervisiae. Cell 27:15–23

    Article  CAS  PubMed  Google Scholar 

  • Beck E, Sommer R, Auerswald EA, Kurz C, Zink B, Osterburg G, Schaller H, Sugimoto K, Sugisaki H, Okamoto T, Takanami M (1978) Nucleotide sequence of bacteriophage fd DNA. Nucleic Acids Res 5:4495–4503

    CAS  PubMed  Google Scholar 

  • Beyreuther K (1978) Revised sequence for the lac repressor. Nature 274:767

    Article  Google Scholar 

  • Cossart P, Gicquel-Sanzey B (1982) Cloning and sequence of the crp gene ofEscherichia coli K12. Nucleic Acid Res 10:1363–1378

    CAS  PubMed  Google Scholar 

  • Dunn JJ, Studier FW (1981) Nucleotide sequence from the genetci left end of bacteriophage T7 DNA to the beignning of gene 4. J Mol Biol 148:303–330

    Article  CAS  PubMed  Google Scholar 

  • Farabaugh PJ (1978) Sequence of the lacI gene. nature 274:765–769

    Article  CAS  PubMed  Google Scholar 

  • Fiers W, Contreras R, Haegeman G, Rogiers R, Van de Voorde A, Van Heuverswyn H, Van Herreweghe J, Volckaert G, Ysebaert M (1978) Complete nucleotide sequence of SV40 DNA. Nature 273:113–119

    Article  CAS  PubMed  Google Scholar 

  • Fitch WM (1966) An improved method of testing for evolutionary homology. J Mol Biol 16:9–16

    CAS  PubMed  Google Scholar 

  • Grosschedl R, Schwarz E (1979) Nucleotide sequence of the crocII-oop region of bacteriophage 434 DNA. Nucleic Acids Res 10:867–881

    Google Scholar 

  • Gunsalus RP, Yanofsky C (1980) Nucleotide sequence and expression ofEscherichia coli trpR, the structural gene of the trp aporepressor. Proc Natl Acad Sci USA 77:7117–7121

    CAS  PubMed  Google Scholar 

  • Heffron F, McCarthy BJ, Ohtsubo H, Ohtsubo E (1979) DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition of Tn3. Cell 18:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Hoess RH, Foeller C, Bidwell K, Landy A (1980) Site specific recombination functions of bacteriophage lambda: DNA sequence of regulatory regions and overlapping structural genes for Int and Xis. Proc Natl Acad Sci USA 77:2482–2486

    CAS  PubMed  Google Scholar 

  • Horii T, Ogawa T, Ogawa H (1980) Organization of the recA gene ofEscherichia coli. Proc Natl Acad Sci USA 77:313–317

    CAS  PubMed  Google Scholar 

  • Horii T, Ogawa T, Ogawa H (1981) Nucleotide sequence of the lexA gene ofE. coli. Cell 23:689–697

    Article  CAS  PubMed  Google Scholar 

  • Hsiang MW, Cole RD, Takeda Y, Echols H (1977) Amino acid sequence of the cro regulatory protein of bacteriophage lambda. Nature 270:275–277

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M (1981) Lambda repressor and cro — components of an efficient molecular switch. Nature 294:217–223

    Article  CAS  PubMed  Google Scholar 

  • Markham BE, Little JW, Mount DW (1981) Nucleotide sequence of the lexA gene ofEscherichia coli K-12. Nucleic Acids Res 9:4149–4161

    CAS  PubMed  Google Scholar 

  • Matthews BW (1977) X-ray structure of proteins. Neurath H, Hill RL (eds) The Proteins. 3rd edn, vol III. Acadmeic Press, New York, pp 403–590

    Google Scholar 

  • Matthews BW, Grütter MG, Anderson WF, Remington SJ (1981) Common precursor of lysozymes of the egg-white and bacteriophage T4. Nature 290:334–335

    Article  CAS  PubMed  Google Scholar 

  • Matthews BW, Ohlendorf DH, Anderson WF, Takeda Y (1982) Structure of the DNA-binding region of lac repressor inferred from ist homology with cro repressor. Proc Natl Acad Sci USA 79:1428–1432

    CAS  PubMed  Google Scholar 

  • McKay DB, Steitz TA (1981) Structure of catabolite gene activatory protein at 2.9 Angstrom resolution suggests binding to left handed B DNA Nature 290:744–749

    Article  CAS  PubMed  Google Scholar 

  • McPherson A, Jurnak FA, Wang AHJ, Molineux I, Rich A (1979) Structure at 2.3 Angstrom resolution of the gene 5 product of bacteriophage fd: a DNA unwinding protein. J Mol Biol 134:379–400

    Article  CAS  PubMed  Google Scholar 

  • Mivada CG, Horwitz AH, Cass L-G, Timko J., Wilcox G (1980) DNA sequence of the araC regulatory gene fromEscherichia coli B/r. Nucleic Acids Res 8:5267–5275

    Google Scholar 

  • Nakashima Y, Dunker AK, Marion DA, Konigsberg W (1974) The amino acid sequence of a DNA binding protein, the gene 5 products of fd filamentous bacteriophage. FEBS Lett 40:290–292

    Article  CAS  PubMed  Google Scholar 

  • Newman AK, Rubin RA, Kim S-H, Modrich P (1981) DNA sequences of structural genes for EcoRI DNA restriction and modification enzymes. J Biol Chem 256:2131–2139

    CAS  PubMed  Google Scholar 

  • Ohlendorf DH, Anderson WF, Fisher RG, Takeda Y, Matthews BW (1982) The molecular basis of DNA-protein recognition infered from the structure of cro repressor. Nature 298:718–723

    Article  CAS  PubMed  Google Scholar 

  • Pabo CO, Lewis M (1982) The operator-binding domain of lambda repressor: structure and DNA recognition. Nuture 298:443–447

    CAS  Google Scholar 

  • Putney SD, Royal NJ, Neuman de Vegvar H, Herlihy WC, Biemann K, Schimmel P (1981) Primary structure of a large aminoacyl-tRNA synthetase. Science 213:1497–1501

    CAS  PubMed  Google Scholar 

  • Roberts TM, Shimatake H, Brady C, Rosenburg M (1977) Sequence of the cro gene of bacteriophage lambda. Nature 270:274–275

    CAS  PubMed  Google Scholar 

  • Sancar A, Williams KR, Chase JW, Rupp WD (1981) Sequence of the ssb gene and protein. Proc Natl Acad Sci USA 78:4274–4278

    CAS  PubMed  Google Scholar 

  • Sauer RT (1978) DNA sequence of the bacteriophage lambda cI gene. Nature 276:301–302

    Article  CAS  PubMed  Google Scholar 

  • Sauer RT, Anderegg R (1978) Primary structure of the lambda repressor. Biochemistry 17:1092–1100

    CAS  PubMed  Google Scholar 

  • Sauer RT, Pan J, Hopper P, Hehir K, Brown J, Poteete A (1981) Primary structure of the phage P22 repressor and its gene c2. Biochemistry 20:3591–3598

    CAS  PubMed  Google Scholar 

  • Sauer RT, Yocum RR, Doolittle RF, Lewis M, Pabo CO (1982) Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature 298:447–451

    Article  CAS  PubMed  Google Scholar 

  • Steitz TA, Ohlendorf DH, McKay DB, Anderson WF, Matthews BW (1982) Tructural similarity in the DNA-binding domain of catabolite gene activator and cro repressor proteins. Proc Natl Acad Sci USA 79:3097–3100

    CAS  PubMed  Google Scholar 

  • von Wilcken-Bergmann B, Müller-Hill B (1982) Sequence of GalR gene indicates a common evolutionary origin of lac and gal repressor inEscherichia coli. Proc Natl Acad Sci USA 79:2417–2431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlendorf, D.H., Anderson, W.F. & Matthews, B.W. Many gene-regulatory proteins appear to have a similar α-helical fold that binds DNA and evolved from a common precursor. J Mol Evol 19, 109–114 (1983). https://doi.org/10.1007/BF02300748

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02300748

Key words

Navigation