Psychometrika

, Volume 41, Issue 4, pp 505–529 | Cite as

Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features

  • Forrest W. Young
  • Jan de Leeuw
  • Yoshio Takane
Article

Abstract

A method is discussed which extends canonical regression analysis to the situation where the variables may be measured at a variety of levels (nominal, ordinal, or interval), and where they may be either continuous or discrete. There is no restriction on the mix of measurement characteristics (i.e., some variables may be discrete-ordinal, others continuous-nominal, and yet others discrete-interval). The method, which is purely descriptive, scales the observations on each variable, within the restriction imposed by the variable's measurement characteristics, so that the canonical correlation is maximal. The alternating least squares algorithm is discussed. Several examples are presented. It is concluded that the method is very robust. Inferential aspects of the method are not discussed.

Key words

linear model canonical analysis measurement multivariate data survey data successive block algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference notes

  1. Carroll, J. Douglas. Personal communication, 1976.Google Scholar
  2. de Leeuw, J.Canonical analysis of categorical data. Unpublished doctoral dissertation, University of Leiden, The Netherlands, 1973.Google Scholar
  3. de Leeuw, J.The linear nonmetric model (Research Note RN003-69). Leiden, The Netherlands: University of Leiden, Data Theory, 1969.Google Scholar
  4. de Leeuw, J.Nonmetric discriminant analysis (Research Note RN006-68). Leiden, The Netherlands: University of Leiden, Data Theory, 1968.Google Scholar
  5. de Leeuw, J.Normalized cone regression. Unpublished paper, University of Leiden, Data Theory, The Netherlands, 1975.Google Scholar
  6. Hoadley, J.Spatial analysis of Senate voting patterns. Unpublished master's thesis, University of North Carolina, 1974.Google Scholar
  7. Srinivasan, V.Linear programming computational procedures for ordinal regression. Unpublished manuscript, Graduate School of Business, Stanford University, 1974.Google Scholar

References

  1. Carroll, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences. Seminar Press, New York, 1972.Google Scholar
  2. Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 283–319.Google Scholar
  3. Cliff, N. & Young, F. W. On the relation between unidimensional judgments and multidimensional scaling.Organizational Behavior and Human Performance, 1968,3, 207–208.CrossRefGoogle Scholar
  4. de Leeuw, J., Young, F. W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 1976, 471–503.Google Scholar
  5. Fisher, R.Statistical methods for research workers (10th ed.). Edinburgh: Oliver and Boyd, 1938.Google Scholar
  6. Hayashi, C. On the quantification of qualitative data from the mathematico: Statistical point of view.Annals of the Institute of Statistical Mathematics, 1950,2, 35–47.Google Scholar
  7. Hotelling, H. The most predictable criterion.Journal of Educational Psychology, 1935,26, 139–142.Google Scholar
  8. Lingoes, J. C.The Guttman-Lingoes nonmetric program series. Ann Arbor, Michigan: Mathesis Press, 1973.Google Scholar
  9. Shepard, R. N. & Kruskal, J. B. A nonmetric variety of linear factor analysis.Psychometrika, 1974,39, 123–157.CrossRefGoogle Scholar
  10. Takane, Y., Young, F. W., & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features.Psychometrika, in press.Google Scholar
  11. Wold, H. & Lyttkens, E. (Eds.) Nonlinear iterative partial least squares (NIPALS) estimation procedures (group report).Bulletin of the International Statistical Institute, 1969,43, 29–51.Google Scholar
  12. Young, F. W. A model for polynomial conjoint analysis algorithms. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling, Vol. 1. New York: Seminar Press, 1972.Google Scholar
  13. Young, F. W. Methods for describing ordinal data with cardinal models.Journal of Mathematical Psychology, 1975,12, 416–436.CrossRefGoogle Scholar

Copyright information

© Psychometric Society 1976

Authors and Affiliations

  • Forrest W. Young
    • 2
  • Jan de Leeuw
    • 1
  • Yoshio Takane
    • 2
  1. 1.Rijksuniversiteit Te LeidenThe Netherlands
  2. 2.Psychometric LaboratoryUniversity of North CarolinaChapel Hill

Personalised recommendations