Environmental Biology of Fishes

, Volume 30, Issue 1–2, pp 191–201 | Cite as

Allozyme polymorphisms permit the identification of larval and juvenile rockfishes of the genusSebastes

  • Lisa W. Seeb
  • Arthur W. KendallJr.
Identification, Systematics and Ecology


ManySebastes larvae lack distinguishing morphological characteristics, particularly in the size range of 8–12 mm. Complete descriptions are available for only about 12 of the 72 northeastern Pacific species. Allozyme analysis has been very useful in the identification of adultSebastes, and our objective was to determine whether it could be equally useful in the identification of larvae and juveniles. Individually dissected tissues (muscle, liver, eye, heart) were assayed fromSebastes juveniles (>30 mm total length (TL)). The allozyme activity and resolution from the juveniles for 33 loci were indistinguishable from those obtained from adults. Larvae (5–12 mm TL) were prepared whole, and their allozyme expression varied by individual size and locus. A total of 32 loci were resolved from the larger (9–12 mm TL) larvae, but the allozyme activity was reduced in smaller (5–8 mm TL) larvae. Adequate resolution from the smaller larvae was obtained for 28 loci, a sufficient number to identify individuals to species. Allozyme analysis is a valuable technique to identify the species ofSebastes larvae and to aid in developing morphological and meristic descriptions. Other DNA-level techniques will likely further increase our ability to identifySebastes larvae.

Key words

Taxonomy Electrophoresis Scorpaenidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References cited

  1. Allendorf, F. W. & F. M. Utter. 1979. Population genetics. pp. 407–454.In: W. S. Hoar, D. S. Randall & J. R. Brett (ed.) Fish Physiology, Academic Press, New York.Google Scholar
  2. Avise, J. C. 1974. Systematic value of electrophoretic data. Syst. Zool. 23: 465–481.Google Scholar
  3. Avise, J. C. & C. F. Aquadro. 1982. A comparative summary of genetic distances in the vertebrates: patterns and correlations. Evol. Biol. 15: 151–185.Google Scholar
  4. Avise, J. C. & N. C. Saunders. 1984. Hybridization and introgression among species of sunfish (Lepomis): analysis by mitochondrial DNA and allozyme markers. Genetics 108: 237–255.Google Scholar
  5. Ayala, F. J. 1983. Enzymes as taxonomic characters. pp. 3–26.In: G. S. Oxford & D. Rollinson (ed.) Protein Polymorphism: Adaptive and Taxonomic Significance. Academic Press, New York.Google Scholar
  6. Barrett, I., J. Joseph & H. G. Moser. 1966. Electrophoretic analysis of hemoglobins of California rockfish (genusSebastodes). Copeia 1966: 489–494.Google Scholar
  7. Bermingham, E. & J. C. Avise. 1986. Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics 113: 939–965.Google Scholar
  8. Brown, W. M. 1983. Evolution of animal mitochondrial DNA. pp. 62–88.In: M. Nei & R. K. Koehn (ed.) Evolution of Genes and Proteins, Sinauer Associates, Sunderland.Google Scholar
  9. Buth, D. G. 1984. The application of electrophoretic data in systematic studies. Ann. Rev. Ecol. Syst. 15: 501–522.CrossRefGoogle Scholar
  10. Clayton, J. W. & D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29: 1169–1172.Google Scholar
  11. Cockburn, A. F., C. A. Tarrant & S. Mitchell. 1988. Use of DNA probes to distinguish sibling species of theAnopheles quadrimaculatus complex. Fla. Entomol. 71: 299–302.Google Scholar
  12. Danzmann, R. G., M. M. Ferguson & F. W. Allendorf. 1985. Allelic differences in the initial expression of paternal alleles at an isocitrate dehydrogenase locus in rainbow trout (Salmogairdneri). Dev. Genet. 5: 117–127.Google Scholar
  13. DeSalle, R., L. V. Giddings & A. Templeton. 1986. Mitochondrial DNA variability in natural populations of HawaiianDrosophila. I. Methods and levels of variability inD. silvestris andD. heteroneura populations. Heredity 56: 69–74.Google Scholar
  14. Eschmeyer, W. N. E. S. Herald & H. Hammann. 1984. A field guide to Pacific coast fishes of North America from the Gulf of Alaska to Baja California. Houghton Mifflin Co., Boston. 336 pp.Google Scholar
  15. Ferris, S. D. & W. J. Berg. 1987. The utility of mitochondrial DNA in fish genetics and fishery management. pp. 277–299.In: N. Ryman & F. Utter (ed.) Population Genetics and Fishery Management, Washington Sea Grant, University of Washington Press, Seattle.Google Scholar
  16. Gardiner, W. R. 1974. An electrophoretic method for distinguishing the young fry of salmonSalmo salar (L.) from those of troutSalmo trutta (L.). J. Fish Biol. 6: 517–519.CrossRefGoogle Scholar
  17. Gerbi, S. 1985. Evolution of ribosomal DNA. pp. 419–518.In: R. MacIntyre (ed.) Molecular Evolutionary Genetics, Plenum, New York.Google Scholar
  18. Graves, J. E., M. J. Fellows, P. A. Oeth & R. S. Waples. 1990. Biochemical genetics of southern California basses of the genusParalabrax and a method for the specific identification of fresh and ethanol-preserved individual eggs and early larvae. U. S. Fish. Bull. (in press).Google Scholar
  19. Hale, L. R. & R. S. Singh. 1986. Extensive variation and heteroplasmy in size of mitochondrial DNA among geographic populations ofDrosophila melanogaster. Proc. Natl. Acad. Sci. USA 83: 8813–8817.Google Scholar
  20. Hall, H. G. 1988. Distinguishing African and European honeybees using nuclear DNA restriction fragment polymorphisms. Fla. Entomol. 71: 294–299.Google Scholar
  21. Hallerman, E. M. & J. S. Beckmann. 1988. DNA-level polymorphisms as a tool in fisheries science. Can. J. Fish. Aquat. Sci. 45: 1075–1087.Google Scholar
  22. Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Board Can. Bull. 180. 740 pp.Google Scholar
  23. Hubbs, C. L. & L. P. Schultz. 1933. Descriptions of two new American species referable to the rockfish genusSebastodes, with notes on related species. Univ. Washington Publ. Biol. 2: 15–44.Google Scholar
  24. Johnson, A. G. 1972. An electrophoretic investigation of the family Scorpaenidae. Ph.D. Thesis, University of Washington, Seattle. 65 pp.Google Scholar
  25. Johnson, A. G., F. M. Utter & H. O. Hodgins. 1970a. Electrophoretic variants of L-alpha glycerophosphate dehydrogenase in Pacific ocean perch (Sebastodes alutus). J. Fish. Res. Board Can. 27: 943–945.Google Scholar
  26. Johnson, A. G., F. M. Utter & H. O. Hodgins. 1970b. Interspecific variation of tetrazolium oxidase inSebastodes (rockfish). Comp. Biochem. Physiol. 37: 281–285.Google Scholar
  27. Johnson, A., F. M. Utter & H. O. Hodgins. 1971. Phosphoglucomutase polymorphism in Pacific ocean perch,Sebastes alutus. Comp. Biochem. Physiol. 39B: 285–290.Google Scholar
  28. Johnson, A. G., F. M. Utter & H. O. Hodgins. 1972. Electrophoretic investigation of the family Scorpaenidae. U. S. Fish. Bull. 70: 403–413.Google Scholar
  29. Johnson, A. G., F. M. Utter & H. O. Hodgins. 1973. Estimate of genetic polymorphism and heterozygosity in three species of rockfish (genusSebastes). Comp. Biochem. Physiol. 44B: 397–406.Google Scholar
  30. Jungmann, T. P. 1983. Application of discontinuous sodium dodecyl sulfate polyacrylamide gel electrophoresis to the biochemical systematics of rockfish (genusSebastes) hemolyzate. Biochem. Syst. Ecol. 11: 389–396.Google Scholar
  31. Kendall, A. W., Jr. 1991. Systematics and identification of larvae and juveniles of the genusSebastes. Env. Biol. Fish. 30: 173–190.Google Scholar
  32. Kendall, A. W., Jr., E. H. Ahlstrom & H. G. Moser. 1984. Early life history stages of fishes and their characters. pp. 11–22.In: H. G. Moser, W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr. & S. L. Richardson (ed.) Ontogeny and Systematics of Fishes, Amer. Soc. Ichthyol. Herpetol. Spec. Publ. 1.Google Scholar
  33. Kendall, A. W., Jr. & W. H. Lenarz. 1987. Status of early life history studies of northeast Pacific rockfishes. pp. 99–128.In: Proceedings of the International Rockfish Symposium, October, 1986, Anchorage, University of Alaska, Alaska Sea Grant Rep. 87-2.Google Scholar
  34. Kocher, T. A., W. K. Thomas, A. Meyer, S. V. Edwards, S. Pååbo, F. X. Villablanca & A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA 86: 6196–6200.Google Scholar
  35. May, B., J. E. Wright & M. Stoneking. 1979. Joint segregation of biochemical loci in Salmonidae: results from experiments withSalvelinus and review of the literature on other species. J. Fish. Res. Board Can. 36: 1114–1128.Google Scholar
  36. Morgan, R. P. 1975. Distinguishing white perch and striped bass by electrophoresis. Cheasapeake Sci. 16: 68–70.Google Scholar
  37. Mork, J. 1990. Eggs and embryos.In: D. H. Whitmore, (ed.) Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management. CRC Press, Boca Raton. (in press).Google Scholar
  38. Mork, J. & T. G. Heggberget 1984. Eggs of Atlantic salmon (Salmo salar L.) and trout (S. trutta L.); identification by phosphoglucoisomerase zymograms. Fish. Manag. 15: 59–65.Google Scholar
  39. Mork, J., P. Solemdal & G. Sundnes. 1983. Identification of marine fish eggs: a biochemical genetics approach. Can. J. Fish. Aquat. Sci. 40: 361–369.Google Scholar
  40. Mork, J. & G. Sundnes. 1983. Population genetic studies in fish may start at the egg stage: examples from gadoid species in Norwegian waters. Sarsia 68: 171–175.Google Scholar
  41. Naevdal, G. 1978. Differentiation betweenmarinus andmentella types of redfish by electrophoresis of haemoglobins. Fiskeridir. Skr. Ser. Havunders. 16(10): 359–368.Google Scholar
  42. Nei, M. 1978. Estimation of average heterozygostity and genetic distance from a small number of individuals. Genetics 89: 583–590.Google Scholar
  43. Philipp, D. P., W. F. Childers & G. S. Whitt. 1979. Evolution of patterns of differential gene expression: a comparison of the temporal and spatial patterns of isozyme locus expression in two closely related fish species (northern largemouth bass,Micropterus salmoides salmoides, and smallmouth bass,Micropterus dolomieui). J. Exp. Zool. 210: 473–488.CrossRefGoogle Scholar
  44. Philipp, D. P., H. R. Parker & G. S. Whitt. 1983. Evolution of gene regulation: isozymic analysis of patterns of gene expression during hybrid fish development. pp. 193–237.In: M. C. Rattazzi, J. G. Scandalios & G. S. Whitt (ed.) Isozymes: Current Topics in Biological and Medical Research, Alan R. Liss, New York.Google Scholar
  45. Ridgway, G. J., S. W. Sherburne & R. D. Lewis. 1970. Polymorphisms in the esterases of Atlantic herring. Trans. Amer. Fish. Soc. 99: 147–151.CrossRefGoogle Scholar
  46. Ryman, N. & F. Utter. 1987. Population genetics and fishery management. Washington Sea Grant, University of Washington Press, Seattle. 420 pp.Google Scholar
  47. Seeb, L. W. 1986. Biochemical systematics and evolution of the scorpaenid genusSebastes. Ph. D. Dissertation, University of Washington, Seattle. 176 pp.Google Scholar
  48. Seeb, L. W. & D. R. Gunderson. 1988. Genetic variation and population structure of Pacific ocean perch (Sebastes alutus). Can. J. Fish. Aquat. Sci. 45: 78–88.Google Scholar
  49. Shaklee, J. B. 1983. The utilization of isozymes as gene markers in fisheries management and conservation. pp. 213–247.In: M. C. Ratazzi, J. G. Scandalios & G. S. Whitt (ed.) Isozymes: Current Topics in Biological and Medical Research, Alan R. Liss, New York.Google Scholar
  50. Shaw, C. R. & R. Prasad. 1970. Starch gel electrophoresis of enzymes: a compilation of recipes. Biochem. Genet. 4: 297–320.Google Scholar
  51. Sidell, B. D., R. G. Otto & D. A. Powers. 1978. A biochemical method for distinction of striped bass and white perch larvae. Copeia 1978: 340–343.Google Scholar
  52. Smith, P. J. & J. Crossland. 1977. Identification of larvae of snapper,Chrysophrys auratus Forster, by electrophoretic separation of tissue enzymes. N. Z. J. Mar. Freshw. Res. 11: 795–798.Google Scholar
  53. Tsuyuki, H., E. Roberts, R. H. Lowes, W. Hadaway & S. J. Westrheim. 1968. Contribution of protein electrophoresis to rockfish (Scorpaenidae) systematics. J. Fish. Res. Board Can. 25: 2477–2501.Google Scholar
  54. Tsuyuki, H., E. Roberts & W. E. Vanstone. 1965. Comparative zone electropherograms of muscle myogens and blood hemoglobins of marine and freshwater vertebrates and their application to biochemical systematics. J. Fish. Res. Board Can. 22: 203–213.Google Scholar
  55. Tsuyuki, H. & S. J. Westrheim. 1970. Analysis of theSebastes aleutianus-S. melanostomus complex and description of a new scorpaenid species,Sebastes caenaematicus, in the Northeast Pacific Ocean. J. Fish. Res. Board Can. 27: 2233–2254.Google Scholar
  56. Turner, B. J. 1984. Evolutionary genetics of fishes. Plenum Press, New York. 636 pp.Google Scholar
  57. Wake, D. B. 1981. The application of allozyme evidence to problems in the evolution of morphology. pp. 257–270.In: G. G. E. Scudder & J. L. Reveal (ed.) Evolution Today, Proceedings of the Second International Congress of Systematic and Evolutionary Biology, Hunt Inst. Botanical Doc., Carnegie-Mellon University, Pittsburgh.Google Scholar
  58. Wishard, L. N., F. M. Utter & D. R. Gunderson. 1980. Stock separation of five rockfish species using naturally occurring biochemical genetic markers. Mar. Fish. Rev. 42: 64–73.Google Scholar
  59. Wyllie Echeverria, T. 1987. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. U.S. Fish. Bull. 85: 229–250.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Lisa W. Seeb
    • 1
  • Arthur W. KendallJr.
    • 2
  1. 1.Fisheries Research Laboratory and Department of ZoologySouthern Illinois UniversityCarbondaleU.S.A.
  2. 2.Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleU.S.A.

Personalised recommendations