Skip to main content
Log in

Oxygen consumption of gestating femaleSebastes schlegeli: Estimating the reproductive costs of livebearing

  • Reproduction and Development
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

During gestation, live-bearing fishes incur physiological energy costs, including provision of energy and respiratory gases to the developing embryos and removal of waste products. Fecundity in the genusSebastes is high, and the ovaries represent a significant portion of the weight of gestating females. In this study, we compare oxygen consumption of gestating females with non-gestating females and males of kurosoi,Sebastes schlegeli, to estimate these costs. Oxygen consumption by pregnant females is significantly higher than that of males and immature females at similar sizes and weights. We estimate that a 1.5 kg gestating female consumes 68% more oxygen than a non-gestating fish during the 51.5-day period of gestation. Such an increase in oxygen consumption rates may have important implications to the metabolic scope of gestating alone, suggesting that costs of increased gill ventilation, ionic and osmotic regulation and cardiac output are relatively high. Such energetic costs represent a quantifiable expense of the viviparous mode of reproduction inSebastes as compared with oviparous species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Amoroso, E.C. 1960. Viviparity in fishes. Symp. Zool. Soc. Lond. 1: 153–181.

    Google Scholar 

  • Balon, E.K. 1975. Reproductive guilds of fishes: a proposal and definition. J. Fish. Res. Board Can. 32: 821–864.

    Google Scholar 

  • Barsukov, V.V. 1981. A brief review of the subfamily Sebastinae. J. Ichthyol. 21: 1–26.

    Google Scholar 

  • Beamish, F.W.H. 1974. Apparent specific dynamic action of largemouth bass,Micropterus salmoides. J. Fish. Res. Board Can. 31: 1763–1769.

    Google Scholar 

  • Berglund, A., G. Rosenqvist & I. Svensson. 1986. Reversed sex roles and parental energy investment in zygotes of two pipefish (Syngnathidae) species. Mar. Ecol. Prog. Ser. 29: 209–215.

    Google Scholar 

  • Boehlert, G.W. 1978. Changes in the oxygen consumption of prejuvenile rockfish,Sebastes diploproa, prior to migration from the surface to deep water. Physiol. Zool. 51: 56–67.

    Google Scholar 

  • Boehlert, G.W., W.H. Barss & P. Lamberson. 1982. Fecundity of the widow rockfish,Sebastes entomelas, off the coast of Oregon. U.S. Fish. Bull. 80: 881–884.

    Google Scholar 

  • Boehlert, G.W., & R.F. Kappenman. 1980. Variation of growth with latitude in two species of rockfish (Sebastes pinniger andS. diploroa) from the northeast Pacific Ocean. Mar. Ecol. Prog. Ser. 3: 1–10.

    Google Scholar 

  • Boehlert, G.W., M. Kusakari, M. Shimizu & J. Yamada. 1986. Energetics during embryonic development in the kurosoi,Sebastes schlegeli Hilgendorf. J. Exp. Mar. Biol. Ecol. 101: 239–256.

    Article  Google Scholar 

  • Boehlert, G.W. & M.M. Yoklavich. 1984. Reproduction, embryonic energetics, and the maternal-fetal relationship in the viviparous genusSebastes (Pisces: Scorpaenidae). Biol. Bull. (Woods Hole) 167: 354–370.

    Google Scholar 

  • Burggren, W. 1985. Gas exchange, metabolism, and ‘ventilation’ in gelatinous frog egg masses. Physiol. Zool. 58: 503–514.

    Google Scholar 

  • Calow, P. 1985. Adaptive aspects of energy allocation. pp. 13–31.In: P. Tytler & P. Calow (ed.) Fish Energetics: New Perspectives. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • De Jager, S. & W.J. Dekkers. 1975. Relations between gill structure and activity in fish. Neth. J. Zool. 25: 276–308.

    Google Scholar 

  • Dobbs, G.H. 1975. Scanning electron microscopy of intraovarian embryos of the viviparous teleostMicrometrus minimus (Gibbons), (Perciformes: Embiotocidae). J. Fish Biol. 7: 209–214.

    Article  Google Scholar 

  • Dygert, P.H. & D.R. Gunderson. 1991. Energy utilization by embryos during gestation in viviparous copper rockfish,Sebastes caurinus. Env. Biol. Fish. 30: 165–171.

    Google Scholar 

  • Eldridge, M.B., J.A. Whipple, M.J. Bowers, B.M. Jarvis & J. Gold. 1991. Reproductive performance of yellowtail rockfish,Sebastes flavidus. Env. Biol. Fish. 30: 91–102.

    Google Scholar 

  • Elliot, J.M. & W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia 19: 195–202.

    Google Scholar 

  • Fry, F.E.J. 1971. The effect of environmental factors on the physiology of fish. pp. 1–99.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, vol. 6, Academic Press, New York.

    Google Scholar 

  • Gray, I.E. 1954. Comparative study of the gill area of marine fishes. Biol. Bull. (Woods Hole) 107: 219–225.

    Google Scholar 

  • Guillemot, P.J., R.J. Larson & W.H. Lenarz, 1985. Seasonal cycles of fat and gonad volume in five species of northern California rockfish (Scorpaenidae:Sebastes). U.S. Fish. Bull. 83: 299–311.

    Google Scholar 

  • Gunderson, D. 1971. Reproductive patterns of Pacific ocean perch (Sebastodes alutus) off Washington and British Columbia and their relation to bathymetric distribution and seasonal abundance. J. Fish. Res. Board Can. 28: 417–425.

    Google Scholar 

  • Gunderson, D.R., P. Callahan & B. Goiney. 1980. Maturation and fecundity of four species ofSebastes. Mar. Fish. Rev. 42: 74–79.

    Google Scholar 

  • Kusakari, M. 1978. Mariculture experiments for mass production of juvenileSebastes schlegeli. pp. 117–139.In: Annu. Rep. Hokkaido Inst. Mariculture.

    Google Scholar 

  • Kusakari, M. 1991. Mariculture of kurosoi,Sebastes schlegeli. Env. Biol. Fish. 30: 245–251.

    Google Scholar 

  • Larson, R.J. 1980. Influence of territoriality on adult density in two rockfishes of the genusSebastes. Mar. Biol. (Berl.) 58: 123–132.

    Google Scholar 

  • Lenarz, W.H. & T.W. Echeverria. 1986. Comparison of visceral fat and gonadal fat volumes of yellowtail rockfish,Sebastes flavidus, during a normal year and a year of El Niño conditions. U.S. Fish. Bull. 84: 743–745.

    Google Scholar 

  • Moser, H.G. 1967a. Reproduction and development ofSebastodes paucispinis and comparison with other rockfishes off southern California. Copeia 1967: 773–797.

    Google Scholar 

  • Moser, H.G. 1967b. Seasonal histological changes in the gonads ofSebastodes paucispinis Ayres, an ovoviviparous teleost (Family Scorpaenidae). J. Morph. 123: 329–353.

    CAS  Google Scholar 

  • Muir, B.S. & A.J. Niimi. 1972. Oxygen consumption of the euryhaline fish aholehole (Kuhlia sandvicensis) with reference to salinity, swimming, and food consumption. J. Fish. Res. Board Can. 29: 67–77.

    Google Scholar 

  • Nakanishi, T. 1991. Ontogeny of the immune system inSebastiscus marmoratus: histogenesis of the lymphoid organs and effects of thymectomy. Env. Biol. Fish. 30: 135–145.

    Google Scholar 

  • Parrish, R.H., C.S. Nelson & A. Bakun. 1981. Transport mechanisms and reproductive success of fishes in the California current. Biol. Oceanogr. 1: 175–203.

    Google Scholar 

  • Pauly, D. 1981. The relationships between gil surface area and growth performance in fish: a generalization of von Bertalanffy's theory of growth. Meeresforsch. Rep. Mar. Res. 28: 251–282.

    Google Scholar 

  • Priede, I.G. 1985. Metabolic scope in fishes. pp. 33–64.In: P. Tytler & P. Calow (ed.) Fish Energetics: New Perspectives, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Sorokin, V.P. 1961. The redfish: gametogenesis and migrations of theSebastes marinus (L.) andSebastes mentella Travin. Rapp. P.-V. Reun. Cons. Int. Explor. Mer 150: 245–250.

    Google Scholar 

  • Trexler, J.C. 1985. Variation in the degree of viviparity in the sailfin molly,Poecilia latipinna. Copeia 1985: 999–1004.

    Google Scholar 

  • Vahl, O. & J. Davenport. 1979. Apparent specific dynamic action of food in the fishBlennius pholis. Mar. Ecol. Prog. Ser. 1: 109–113.

    Google Scholar 

  • Ware, D.M. 1975. Relation between egg size, growth, and natural mortality of larval fish. J. Fish. Res. Board Can. 32: 2503–2512.

    Google Scholar 

  • Webb, P.W. & J.R. Brett. 1972. Oxygen consumption of embryos and parents, and oxygen transfer characteristics within the ovary of two species of viviparous seaperch,Rhacochilus vacca andEmbiotoca lateralis. J. Fish. Res. Board Can. 29: 1543–1553.

    CAS  Google Scholar 

  • Wootton, R.J. 1973. The effect of size of food ration on egg production in the female three-spined stickleback,Gasterosteus aculeatus. J. Fish Biol. 5: 89–96.

    Google Scholar 

  • Wootton, R.J. 1985. Energetics of reproduction. pp. 231–254.In: P. Tytler & P. Calow (ed.) Fish Energetics: New Perspectives, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Yamada, J. & M. Kusakari. 1991. Staging and the time course of embryonic development in kurosoi,Sebastes schlegeli. Env. Biol. Fish. 30: 103–110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehlert, G.W., Kusakari, M. & Yamada, J. Oxygen consumption of gestating femaleSebastes schlegeli: Estimating the reproductive costs of livebearing. Environ Biol Fish 30, 81–90 (1991). https://doi.org/10.1007/BF02296879

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02296879

Key words

Navigation