Psychometrika

, Volume 50, Issue 4, pp 411–420 | Cite as

Binary programming and test design

  • T. J. J. M. Theunissen
Article

Abstract

An algorithmic approach to test design, using information functions, is presented. The approach uses a special branch of linear programming, i.e. binary programming. In addition, results of some benchmark problems are presented. Within the same framework, it is also possible to formulate the problem of individualized testing.

Key words

linear programming binary programming information function test-design individualized testing item bank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnhaum, A. (1968). Some latent trait models. In F. M. Lord & M. R. Novick (ed.),Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  2. Bock, R. D., & M. Aitkin (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm.Psychometrika, 46, 443–459.CrossRefGoogle Scholar
  3. Land, A. H., & A. Doig (1960). An automatic method of solving discrete programming problems.Econometrika, 28, 497–520.Google Scholar
  4. Lord, F. M. (1980).Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  5. Lord, F. M., & M. R. Novick (1968).Statistical theories of mental test scores. Reading, MA: Addison-Wesley.Google Scholar
  6. Oosterloo, S. (1984). Confidence intervals for test information and relative efficiency.Statistica Neelandica, 38, 37–54.Google Scholar
  7. Owen, R. J. (1975). A Bayesian sequential procedure for quantal response in the context of adaptive mental testing.Journal of the American Statistical Association, 70, 351–356.Google Scholar
  8. Papadimitriou, C. H., & K. Steiglitz (1982).Combinatorial optimization: Algorithms and complexity. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  9. Rao, S. S. (1984).Optimization: Theory and applications (2nd ed.). New Delhi: Wiley Eastern.Google Scholar
  10. Syslo, M. J., N. Deo, & J. S. Kowalik (1983).Discrete optimization algorithms. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  11. Taha, H. A. (1975).Integer programming. New York: Academic Press.Google Scholar
  12. Thissen, D., & L. Steinberg (1984). A response model for multiple choice items.Psychometrika, 49, 501–519.Google Scholar
  13. Wolfe, J. H. (1981). Optimal item difficulty for the three-parameter normal ogive response model.Psychometrika, 46, 461–464.CrossRefGoogle Scholar

Copyright information

© The Psychometric Society 1985

Authors and Affiliations

  • T. J. J. M. Theunissen
    • 1
  1. 1.National Institute for Educational Measurement (Cito)ArnhemThe Netherlands

Personalised recommendations