Studia Geophysica et Geodaetica

, Volume 38, Issue 1, pp 71–81 | Cite as

On the transformation of planetary waves of tropospheric origin into waves in radio wave absorption in the lower ionosphere

  • Jan Laštovička
  • Adolf Ebel
  • Adriena Ondrášková


Calculations are carried out of upward propagation of a tropospherically forced 10-day planetary wave into the upper middle atmosphere with the use of the COMMA-R model of the University of Cologne, of its transformation into a wave in electron density by means of the model of the Comenius University, and of its final transformation into a wave in radio wave absorption in the lower ionosphere applying the computer code of the Geophysical Institute. The calculations show that the absorption may be used for investigating the planetary wave activity, particularly of its long-term trends. The possibility of propagation of planetary waves from the winter hemisphere to the summer hemisphere is illustrated, which could contribute to explanation of the occurrence of travelling planetary waves in the mesosphere in summer.


Atmosphere Structural Geology Wave Activity Radio Wave Computer Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Pancheva, E. Apostolov, J. Laštovička, J. Boška: Long-period fluctuations of meteorological origin observed in the lower ionosphere. J. Atm. Terr. Phys.,51 (1989), 381–388.CrossRefGoogle Scholar
  2. [2]
    D. Pancheva, J. Laštovička: Solar or meteorological control of lower ionospheric fluctuations (2–15 and 27 days) in middle latitudes. Handbook for MAP,29 (1989), 210–214.Google Scholar
  3. [3]
    D. Pancheva, J. Laštovička, B. A. de la Morena: Quasi-periodic fluctuations in ionospheric absorption in relation to planetary activity in the stratosphere. J. Atm. Terr. Phys.,53 (1991), 1151–1156.Google Scholar
  4. [4]
    J. Laštovička, D. Pancheva: Changes in characteristics of planetary waves at 80–100 km over central and southern Europe since 1980. Adv. Space Res.,11 (1991), No.3, 31–34.Google Scholar
  5. [5]
    J. Laštovička, V. Fišer, D. Pancheva: Long-term trends in planetary wave activity at 80–100 km inferred from radio wave absorption. J. Atm. Terr. Phys. (in press).Google Scholar
  6. [6]
    T. Grollmann: Wechselwirkung freier Moden, Gezeiten und Schwerewellen in der mittleren Atmosphäre. In: A. Ebel, F. M. Neubauer and P. Speth (Eds.), Mitteilungen aus dem Institut für Geophysik und Meteorologie, Universität zu Köln, Heft84, 1992 (in German).Google Scholar
  7. [7]
    R. A. Vincent: Planetary and gravity waves in the mesosphere and lower thermosphere. Adv. Space Res.,10 (1990), No.12, 93–101.Google Scholar
  8. [8]
    J. M. Forbes, S. Miyahara: Interhemispheric coupling via ducting of the 16-day planetary wave. XX Gen. Asembly IUGG, symp. GAM2.12 (Book of Abstracts p. 258), Vienna 1991.Google Scholar
  9. [9]
    A. S. Medvedev, A. I. Pogoreltsev, S. A. Sukhanova: Modelling of the global structure and penetration across equator of planetary waves. Fiz. atmos. okeana (Phys. Atmos. Ocean),27 (1991), 813–824 (in Russian).Google Scholar
  10. [10]
    J. Laštovička, A. Novák: Gravity and planetary wave effects on radio wave propagation — first results. Paper JS.2-25, XXII Gen. Assembly URSI (Book of Abstracts p. 119), Prague 1990.Google Scholar
  11. [11]
    K. K. Tung, R. S. Lindzen: A theory of stationary long waves. Part II: Resonant Rossby waves in the presence of realistic vertical shears. Mon. Wea. Rev.,107 (1979), 735–749.Google Scholar
  12. [12]
    J. R. Holton: The dynamic meteorology of the stratosphere and mesosphere. Meteor. Monogr.,37, Amer. Met. Soc., 1975.Google Scholar
  13. [13]
    R. Shapiro: The use of linear filtering as a parameterization of atmospheric diffusion. J. Atmos. Sci.,28 (1971), 523–530.CrossRefGoogle Scholar
  14. [14]
    H. J. Jakobs: Untersuchungen von Schwerewelleneffekten mit Hilfe eines 3-D Zirkulationsmodells der mittleren Atmosphäre, Dissertation, Universität zu Köln, Köln, 1986 (in German).Google Scholar
  15. [15]
    H. J. Jakobs, H. Hass: Normal modes as simulated in a 3-dimensional circulation model of the middle atmosphere including regional gravity wave activity. Ann. Geophysicae,5 (1987), 103–110.Google Scholar
  16. [16]
    M. Dameris, A. Ebel: The quasi-biennial oscillation and major stratospheric warmings: A three-dimensional model study. Ann. Geophysicae,8 (1990), 79–86.Google Scholar
  17. [17]
    I. Hirota, T. Hirooka: Normal mode Rossby waves observed in th upper stratosphere, I.: First symmetric modes of wavenumber 1 and 2. J. Atmos. Sci.,41 (1984), 1253–1267.CrossRefGoogle Scholar
  18. [18]
    A. Ondrášková: A numerical model of ion concentration profiles in the lower ionosphere. Studia geoph. et geod.,37 (1993), 189–208.Google Scholar
  19. [19]
    R. M. Jones: Ray theory for lossy media. Radio Sci.,5 (1970), 793–803.Google Scholar
  20. [20]
    J. Laštovička, J. Klas: Calculation of the absorption height profile for the 2775 kHz Kiel — Panská Ves circuit. Travaux Géophys.,XXII (1974), 355–368.Google Scholar

Copyright information

© StudiaGeo 1994

Authors and Affiliations

  • Jan Laštovička
    • 1
  • Adolf Ebel
    • 2
  • Adriena Ondrášková
    • 3
  1. 1.Geophysical InstituteAcad. Sci. Czech. RepublicPrague
  2. 2.Institute for Geophysics and MeteorologyUniversity of CologneCologne
  3. 3.Faculty of Mathematics and PhysicsComenius UniversityBratislava

Personalised recommendations